Skip to main content
Log in

Dynamical structures in a low-thrust, multi-body model with applications to trajectory design

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A key challenge in low-thrust trajectory design is generating preliminary solutions that simultaneously detail the evolution of the spacecraft position and velocity vectors, as well as the thrust history. To address this difficulty, dynamical structures within a combined low-thrust circular restricted 3-body problem (CR3BP-LT) are explored as candidate solutions to seed initial low-thrust trajectory designs. Furthermore, insights from dynamical systems theory are leveraged to inform the design process. In the combined model, the addition of a low-thrust force modifies the locations and stability of the equilibria, resulting in flow configurations that differ from the natural behavior in the CR3BP. Families of periodic solutions in the vicinity of the equilibria supply novel geometries that may be employed in initial designs. Additionally, the application of simplifying assumptions yields a conservative, autonomous system with properties that supply useful insights. “Forbidden regions” at fixed energy levels bound low-thrust motion in such a simplified system, and analytical equations are available to guide the navigation through energy space. Periodic orbits and their associated manifolds also possess useful properties and act similarly to separatrices in the simplified regime. These structures and insights are employed to design transit and capture trajectories in the Earth-Moon CR3BP-LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arnold, V.I.: Catastrophe Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  • Bosanac, N., Cox, A.D., Howell, K.C., Folta, D.C.: Trajectory design for a Cislunar Cubesat leveraging dynamical systems techniques: the Lunar IceCube Mission. In: AAS/AIAA Space Flight Mechanics Meeting, San Antonio, Texas (2017)

  • Conley, C.C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MathSciNet  Google Scholar 

  • Cox, A.D., Howell, K.C., Folta, D.C.: Dynamical structures in a combined low-thrust multi-body environment. In: AAS/AIAA Astrodynamics Specialist Conference, Columbia River Gorge, Stevenson, Washington (2017)

  • Cox, A.D., Howell, K.C., Folta, D.C.: Trajectory design leveraging low-thrust, multi-body equilibria and their manifolds. In: AAS/AIAA Astrodynamics Specialist Conference, Snobird, Utah (2018)

  • Das-Stuart, A., Howell, K.C., Folta, D.C.: A Rapid trajectory design strategy for complex environments leveraging attainable regions and low-thrust capabilities. In: 68th International Astonautical Conference, Adelaide, Australia (2017)

  • Farrés, A.: Transfer orbits to \(L_4\) with a solar sail in the Earth-Sun system. Acta Astronaut. 137, 78–90 (2017)

    Article  ADS  Google Scholar 

  • Farrés, A., Jorba, À., Mondelo, J.M.: Numerical study of the geometry of the phase space of the augmented hill three-body problem. Celest. Mech. Dyn. Astron. 129(1–2), 25–55 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Grebow, D., Ozimek, M., Howell, K.C.: Design of optimal low-thrust lunar Pole–Sitter missions. J. Astronaut. Sci. 58(1), 55–79 (2011)

    Article  ADS  Google Scholar 

  • Gómez, G., Llibre, J., Martínez, R., Simó, C.: Dynamics and Mission Design Near Libration Points, I: Fundamentals: The Case of Collinear Libration Points. World Scientific Monograph Series. Scientific Publishing Ltd., Singapore (2001)

    MATH  Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Haapala, A.F.: Trajectory design in the spatial circular restricted three-body problem exploiting higher dimensional Poincaré maps. Ph.D. Dissertation, Purdue University (2014)

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Pasadena (2011)

    MATH  Google Scholar 

  • Kuninaka, H., Nishiyama, K., Shimizu, Y., Funaki, I., Koixumi, H.: Hayabusa asteroid explorer powered by ion engines on the way to Earth. In: International Electric Propulsion Conference, Ann Arbor, Michigan (2009)

  • Lo, M., Williams, B., Bollman, W., Han, D., Hahn, Y., Bell, J., Hirst, E., Corwin, R., Hong, P., Howell, K., Barden, B., Wilson, R.: GENESIS mission design. J. Astronat. Sci. 49(1), 169–184 (2001)

    Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: combined optimal low-thrust and stable-manifold trajectories to the Earth–Moon halo orbits. In: AIP Conference Proceedings (2007)

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Optimal low-thrust invariant manifold trajectories via attainable sets. J. Guid. Control Dyn. 34(6), 1644–1656 (2011)

    Article  ADS  Google Scholar 

  • Pritchett, R., Zimovan, E., Howell, K.C.: Impulsive and low-thrust transfer design between stable and nearly stable periodic orbits in the restricted problem. In: AIAA SciTech Forum, Kissimmee, Florida (2018)

  • Rayman, M., Varghese, P., Lehman, D., Livesay, L.: Results from the deep space 1 technology validation mission. In: Inernational Astronautical Congress, Session IAA.11.2: Small Planetary Missions. Amsterdam, The Netherlands (1999)

  • Russel, C., Raymond, C.: The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, Berlin (2012)

    Book  Google Scholar 

  • Simó, C., Gómez, G., Llibre, J., Martínez, R., Rodríguez, J.: On the optimal station keeping control of halo orbits. Acta Astronaut. 15(6–7), 391–397 (1987)

    Article  ADS  Google Scholar 

  • Stuart, J.: A Hybrid Systems Strategy for Automated Spacecraft Tour Design and Optimization. Ph.D. Dissertation, Purdue University (2014)

  • Swenson, T., Lo, M.W., Anderson, B., Gorordo, T.: The topology of transport through planar lypaunov orbits. In: AIAA SciTech Forum, Kissimmee, Florida (2018)

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • Thom, R., Fowler, D.H.: Structural Stability and Morphogenesis: An Outline of a General Theory of Models. CRC Press, W. A. Benjamin (1975)

    Google Scholar 

  • Topputo, F., Vasile, M., Bernelli-Zazzera, F.: Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem. J. Astronaut. Sci. 53(4), 353–372 (2005)

    MathSciNet  Google Scholar 

  • Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients, vol. 1. John Wiley & Sons, New York (1975)

    Google Scholar 

Download references

Acknowledgements

This research is supported by a NASA Space Technology Research Fellowship, NASA Grant NNX16AM40H. Portions of this work were completed at the NASA Goddard Space Flight Center, supported by the aforementioned grant. The authors are grateful to the reviewers for providing thorough and insightful feedback on this paper; it has certainly been improved as a result. Additionally, thanks to the Purdue University School of Aeronautics and Astronautics for their facilities and support, including access to the Rune and Barbara Eliasen Visualization Laboratory. Finally, many thanks to the JPL Mission Design and Navigation branch, the Purdue Multi-Body Dynamics Research Group, and Dr. Dan Grebow for interesting discussions and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Cox.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by a NASA Space Technology Research Fellowship, NASA Grant NNX16AM40H.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, A.D., Howell, K.C. & Folta, D.C. Dynamical structures in a low-thrust, multi-body model with applications to trajectory design. Celest Mech Dyn Astr 131, 12 (2019). https://doi.org/10.1007/s10569-019-9891-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-019-9891-7

Keywords

Navigation