Skip to main content
Log in

On the rotation of co-orbital bodies in eccentric orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin–orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter’s dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.minorplanetcenter.org/.

  2. the coordinates of the other point are \((5\pi /3,0)\). The permutation of the index 1 and 2 of the planets allows to exchange the two equilateral configurations, which are linearly stable for small enough planetary masses (namely, if \(\frac{m_0 m_1+m_1 m_2+m_0 m_2}{(m_0+m_1+m_2)^2} < \frac{1}{27} \approx 0.037\), see Gascheau 1843).

  3. Note that since \(\xi _l\) depends only on \(\zeta _0\), the coefficients \(K_q\) depend only on the product \(p\delta \) instead of p and \(\delta \).

References

  • Charlier, C.V.L.: Über den Planeten 1906 TG. Astron. Nachr. 171, 213 (1906)

    Article  ADS  Google Scholar 

  • Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  • Colombo, G.: Rotational period of the planet mercury. Nature 208, 575 (1965)

    Article  ADS  Google Scholar 

  • Correia, A.C.M.: Secular evolution of a satellite by tidal effect: application to triton. Astrophys. J. Lett. 704, L1–L4 (2009)

    Article  ADS  Google Scholar 

  • Correia, A.C.M., Laskar, J.: Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus 201, 1–11 (2009)

    Article  ADS  Google Scholar 

  • Correia, A.C.M., Robutel, P.: Spin–orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits. Astrophys. J. 779, 20 (2013)

    Article  ADS  Google Scholar 

  • Correia, A.C.M., Rodríguez, A.: On the equilibrium figure of close-in planets and satellites. Astrophys. J. 767, 128 (2013)

    Article  ADS  Google Scholar 

  • Danby, J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. Astrophys. 69, 165 (1964)

    MathSciNet  ADS  Google Scholar 

  • Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits. I—theory. Icarus 48, 1–11 (1981)

    Article  ADS  Google Scholar 

  • Gascheau, G.: Examen d’une classe d’quations diffrentielles et application un cas particulier du problme des trois corps. Comptes Rendus 16, 393 (1843)

    Google Scholar 

  • Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. Mon. Not. R Astron. Soc. 407, 390–398 (2010)

    Article  ADS  Google Scholar 

  • Goldreich, P., Peale, S.: Spin–orbit coupling in the solar system. Astron. J. 71, 425 (1966)

    Article  ADS  Google Scholar 

  • Hansen, P.A.: Entwickelung der products einer potenz des radius vectors mit dem sinus oder cosinus eines vielfachen der wahren anomalie in reihen. Abhandl. d. K. S. Ges. d, Wissensch, IV. 182281 (1855)

  • Lagrange: Œuvres complètes, vol. VI, p. 272. Gouthier-Villars, Paris (1772/1869)

  • Laskar, J.: Frequency analysis of a dynamical system. Celest. Mech. Dyn. Astron. 56, 191–196 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Leleu, A., Robutel, P., Correia, A.C.M.: Detectability of quasi-circular co-orbital planets. Application to the radial velocity technique. Astron. Astrophys. 581, A128 (2015)

    Article  ADS  Google Scholar 

  • MacDonald, G.J.F.: Tidal friction. Rev. Geophys. Space Phys. 2, 467–541 (1964)

    Article  ADS  Google Scholar 

  • Mikkola, S., Innanen, K., Wiegert, P., Connors, M., Brasser, R.: Stability limits for the quasi-satellite orbit. Mon. Not. R. Astron. Soc. 369, 15–24 (2006)

    Article  ADS  Google Scholar 

  • Morais, M.H.M.: A secular theory for trojan-type motion. Astron. Astrophys. 350, 318–326 (1999)

    ADS  Google Scholar 

  • Morais, M.H.M., Namouni, F.: Asteroids in retrograde resonance with Jupiter and Saturn. Mon. Not. R. Astron. Soc. 436, L30–L34 (2013)

    Article  ADS  Google Scholar 

  • Morbidelli, A.: Modern celestial mechanics: aspects of solar system dynamics. Taylor & Francis, London (2002)

  • Murray, C.D., Dermott, S.F.: Solar system dynamics. Cambridge University Press, Cambridge (1999)

  • Namouni, F.: Secular interactions of coorbiting objects. Icarus 137, 293–314 (1999)

    Article  ADS  Google Scholar 

  • Nauenberg, M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurrence in extrasolar planetary systems. Astron. J. 124, 2332–2338 (2002)

    Article  ADS  Google Scholar 

  • Robutel, P., Laskar, J.: Frequency map and global dynamics in the solar system I: short period dynamics of massless particles. Icarus 152, 4–28 (2001)

    Article  ADS  Google Scholar 

  • Robutel, P., Niederman, L., Pousse, A.: Rigorous treatment of the averaging process for co-orbital motions in the planetary problem. ArXiv e-prints (2015)

  • Robutel, P., Pousse, A.: On the co-orbital motion of two planets in quasi-circular orbits. Celest. Mech. Dyn. Astron. 117, 17–40 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Robutel, P., Rambaux, N., El Moutamid, M.: Influence of the coorbital resonance on the rotation of the trojan satellites of saturn. Celest. Mech. Dyn. Astron. 113(1), 1–22 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wisdom, J., Peale, S.J., Mignard, F.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984a)

    Article  ADS  Google Scholar 

  • Wisdom, J., Peale, S.J., Mignard, F.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984b)

    Article  ADS  Google Scholar 

  • Wolf, M.: Photographische Aufnahmen von kleinen Planeten. Astron. Nachr. 170, 353 (1906)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leleu.

Appendix

Appendix

See Tables 1 and 2.

Table 1 Notations. All orbital elements are given in heliocentric coordinates, thus with respect to \(m_0\)
Table 2 \((B-A)/C\) for bodies of the solar system (see Correia and Rodríguez 2013; Robutel et al. 2012 and references therein). The \((B-A)/C\) of the co-orbitals orbiting around Saturn are so large that their resonant islands totally overlap (Robutel et al. 2012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leleu, A., Robutel, P. & Correia, A.C.M. On the rotation of co-orbital bodies in eccentric orbits. Celest Mech Dyn Astr 125, 223–246 (2016). https://doi.org/10.1007/s10569-016-9681-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9681-4

Keywords

Navigation