Skip to main content
Log in

Non-integrability of the equal mass n-body problem with non-zero angular momentum

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We prove an integrability criterion and a partial integrability criterion for homogeneous potentials of degree −1 which are invariant by rotation. We then apply it to the proof of the meromorphic non-integrability of the n-body problem with Newtonian interaction in the plane on a surface of equation (H, C) = (H 0, C 0) with (H 0, C 0) ≠ (0, 0) where C is the total angular momentum and H the Hamiltonian, in the case where the n masses are equal. Several other cases in the 3-body problem are also proved to be non integrable in the same way, and some examples displaying partial integrability are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayoul M., Zung N.: Galoisian obstructions to non-Hamiltonian integrability. Comptes Rendus Mathematique 348(23), 1323–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogoyavlensky O.: Extended integrability and bi-Hamiltonian systems. Commun. Math. Phys. 196(1), 19–51 (1998)

    Article  ADS  Google Scholar 

  • Boucher D.: Sur la non-intégrabilité du probleme plan des trois corps de masses égalesa un le long de la solution de Lagrange. CR Acad. Sci. Paris 331, 391–394 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Corbera M., Delgado J., Llibre J.: On the existence of central configurations of p nested n-gons. Qualitat. Theory Dyn. Syst. 8, 255–265 (2009). doi:10.1007/s12346-010-0004-y

    Article  MathSciNet  Google Scholar 

  • Craven B.: Complex symmetric matrices. J. Aust. Math. Soc. 10(3–4), 341–354 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Gantmacher, F.: Matrix Theory, vol. 2. New York (1959)

  • Hietarinta J.: A search for integrable two-dimensional Hamiltonian systems with polynomial potential. Phys. Lett. A 96(6), 273–278 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  • Howard J.E., Meiss J.D.: Straight line orbits in Hamiltonian flows. Celest. Mech. Dyn. Astron. 105, 337–352 (2009). doi:10.1007/s10569-009-9231-4,0903.4995

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kimura T.: On Riemann’s equations which are solvable by quadratures. Funkcial Ekvac 12(269–281), 1970 (1969)

    Google Scholar 

  • Kovacic J.: An algorithm for solving second order linear homogeneous differential equations. J. Symbol. Comput. 2(1), 3–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee T., Santoprete M.: Central configurations of the five-body problem with equal masses. Celest. Mech. Dyn. Astron. 104(4), 369–381 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Maciejewski, A., Przybylska, M., Yoshida, H.: Necessary conditions for partial and super-integrability of Hamiltonian systems with homogeneous potentia. Arxiv preprint nlin/0701057 (2007)

  • Maciejewski A.J., Przybylska M.: Non-integrability of the three-body problem. Celest. Mech. Dyn. Astron. 110(1), 17–30 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  • Morales Ruiz, J.: Differential Galois theory and non-integrability of Hamiltonian systems. Progress Math. Boston, vol. 179 (1999)

  • Morales-Ruiz J., Ramis J.: Galoisian obstructions to integrability of Hamiltonian systems. Methods Appl. Anal. 8(1), 33–96 (2001)

    MathSciNet  MATH  Google Scholar 

  • Morales-Ruiz J., Ramis J.: Galoisian obstructions to integrability of Hamiltonian systems ii. Methods Appl. Anal. 8(1), 97–112 (2001)

    MATH  Google Scholar 

  • Morales-Ruiz J., Ramis J.: A note on the non-integrability of some Hamiltonian systems with a homogeneous potential. Methods Appl. Anal. 8(1), 113–120 (2001)

    MathSciNet  MATH  Google Scholar 

  • Morales-Ruiz J., Simon S.: On the meromorphic non-integrability of some n-body problems. Discrete Continuous Dyn. Syst. (DCDS-A) 24(4), 1225–1273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Morales-Ruiz J., Ramis J., Simo C.: Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Annal. Scient. l’Ecole Normale Supérieure 40, 845–884 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Pacella F.: Central configurations of the n-body problem via equivariant morse theory. Arch. Ration. Mech. Anal. 97(1), 59–74 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Pina E., Lonngi P.: Central configurations for the planar Newtonian four-body problem. Celest. Mech. Dyn. Astron. 108(1), 73–93 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ronveaux A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  • Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. Siam Review, pp. 467–494 (1981)

  • Tsygvintsev A.: The meromorphic non-integrability of the three-body problem. Journal fuer die reine und angewandte Mathematik (Crelles Journal) 2001(537), 127–149 (2001)

    MathSciNet  Google Scholar 

  • Tsygvintsev A.: On some exceptional cases in the integrability of the three-body problem. Celest. Mech. Dyn. Astron. 99(1), 23–29 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yoshida H.: Necessary condition for the existence of algebraic first integrals. Celest. Mech. 31(4), 381–399 (1983)

    Article  ADS  MATH  Google Scholar 

  • Yoshida H.: A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential. Phys. D Nonlinear Phenom. 29(1–2), 128–142 (1987)

    Article  ADS  MATH  Google Scholar 

  • Ziglin S.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. i. Function. Anal. Appl. 16(3), 181–189 (1982)

    Article  MathSciNet  Google Scholar 

  • Ziglin S.: Integrals in involution for groups of linear symplectic transformations and natural mechanical systems with homogeneous potential. Function. Anal. Appl. 34(3), 179–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Combot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combot, T. Non-integrability of the equal mass n-body problem with non-zero angular momentum. Celest Mech Dyn Astr 114, 319–340 (2012). https://doi.org/10.1007/s10569-012-9417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9417-z

Keywords

Mathematics Subject Classification

Navigation