Skip to main content

Advertisement

Log in

Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Minimum energy configurations in Celestial Mechanics are investigated. It is shown that this is not a well defined problem for point-mass celestial mechanics but well-posed for finite density distributions. This naturally leads to a granular mechanics extension of usual Celestial Mechanics questions such as relative equilibria and stability. This paper specifically studies and finds all relative equilibria and minimum energy configurations for N = 1, 2, 3 and develops hypotheses on the relative equilibria and minimum energy configurations for N ≫ 1 bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold V.I., Kozlov V.V., Neishtadt A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Burns J.A., Safronov V.S.: Asteroid nutation angles. Mon. Not. R. Astron. Soc. 165, 403–411 (1973)

    ADS  Google Scholar 

  • Castellanos A.: The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54(4), 263–376 (2005)

    Article  ADS  Google Scholar 

  • Cendra H., Marsden J.E.: Geometric mechanics and the dynamics of asteroid pairs. Dyn. Syst. Int. J. 20, 3–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Fahnestock E.G., Scheeres D.J.: Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4. Icarus 194, 410–435 (2008)

    Article  ADS  Google Scholar 

  • Goldreich P., Peale S.: Spin-orbit coupling in the solar system. Astron. J. 71, 425 (1966)

    Article  ADS  Google Scholar 

  • Goldreich P., Sari R.: Tidal evolution of rubble piles. Astrophys. J. 691, 54–60 (2009)

    Article  ADS  Google Scholar 

  • Holsapple K.A.: On yorp-induced spin deformations of asteroids. Icarus 205(2), 430–442 (2010)

    Article  ADS  Google Scholar 

  • Jacobson S.A., Scheeres D.J.: Dynamics of rotationally fissioned asteroids: source of observed small asteroid systems. Icarus 214, 161–178 (2011)

    Article  ADS  Google Scholar 

  • Maciejewski A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63(1), 1–28 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moeckel R.: On central configurations. Mathematische Zeitschrift 205(1), 499–517 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Pravec P., Vokrouhlickỳ D., Polishook D., Scheeres D.J., Harris A.W., Galád A. et al.: Formation of asteroid pairs by rotational fission. Nature 466(7310), 1085–1088 (2010)

    Article  ADS  Google Scholar 

  • Richardson D.C., Elankumaran P., Sanderson R.E.: Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus 173(2), 349–361 (2005)

    Article  ADS  Google Scholar 

  • Saari, D.G.: On bounded solutions of the n-body problem. In: Giacaglia, G.E.O. (ed.) Periodic Orbits Stability and Resonances, vol. 1, p. 76 (1970)

  • Sánchez P., Scheeres D.J.: Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. Astrophys. J. 727, 120 (2011)

    Article  ADS  Google Scholar 

  • Sánchez, P., Scheeres, D.J.: DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids. Icarus 218, 876–894 (2012). http://dx.doi.org/10.1016/j.icarus.2012.01.014

  • Scheeres D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83(1), 155–169 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scheeres D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94, 317–349 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scheeres D.J.: Rotational fission of contact binary asteroids. Icarus 189(2), 370–385 (2007)

    Article  ADS  Google Scholar 

  • Scheeres D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104(1), 103–128 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Simo J.C., Lewis D., Marsden J.E.: Stability of relative equilibria. Part I: the reduced energy-momentum method. Arch. Ration. Mech. Anal. 115(1), 15–59 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Smale S.: Topology and mechanics. I. Inventiones mathematicae 10(4), 305–331 (1970a)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smale S.: Topology and mechanics. II. Inventiones mathematicae 11(1), 45–64 (1970b)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wang L.S., Krishnaprasad P.S., Maddocks J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50(4), 349–386 (1990)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Scheeres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheeres, D.J. Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems. Celest Mech Dyn Astr 113, 291–320 (2012). https://doi.org/10.1007/s10569-012-9416-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-012-9416-0

Keywords

Navigation