Skip to main content
Log in

Infinite Feigenbaum sequences and spirals in the vicinity of the Lagrangian periodic solutions

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We studied systematically cases of the families of non-symmetric periodic orbits in the planar restricted three-body problem. We took interesting information about the evolution, stability and termination of bifurcating families of various multiplicities. We found that the main families of simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals around a focal point-terminating point in x- at which the Jacobi constant is C  = 3 and their periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family approaches asymptotically its termination point infinite changes of stability to instability and vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral characteristics appear and each one of them generates infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate large chaotic regions near the corotation points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating family, which approaches its focal point, infinite loops, one inside the other, surrounding the unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points L4, L5 with infinite period. This is a new mechanism that produces very large degree of stochasticity. These conclusions help us to comprehend better the motions around the points L4 and L5 of Lagrange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bardin B.: On motions near the Lagrange equilibrium point L4 in the case of Routh’s critical mass ratio. Celest. Mech. Dyn. Astron. 82, 163 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bier M., Bountis T.: Remerging Feigenbaum trees in dynamical systems. Phys. Lett. A 104, 239 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • Bruno A.D., Varin V.P.: The limit problems for the equation of oscillations of a satellite. Celest. Mech. Dyn. Astron. 67(1), 1–40 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bruno A.D.: Families of periodic solutions to the Beletsky equation. Cosmic. Res. 40(3), 274–295 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Contopoulos G.: Inverse Feigenbaum sequences in Hamiltonian systems: Lett. Nuovo Cim. 37, 149 (1983a)

    MathSciNet  Google Scholar 

  • Contopoulos G.: Infinite bifurcations, gaps and bubbles in Hamiltonian systems. Physica D 8, 142 (1983b)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Contopoulos G.: The generation of spiral characteristics. Celest. Mech. Dyn. Astron. 50, 251 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Contopoulos G.: Order and Chaos. In: Contopoulos, G., Spyrou, N., Blahos, L. (eds) Galactic Dynamics and N-Body Simulations., pp. 33. Springer, New York (1993)

    Google Scholar 

  • Contopoulos G.: Order and Chaos in Dynamical Astronomy. Springer, New York (2002)

    MATH  Google Scholar 

  • Contopoulos G., Zikides M.: Periodic orbits and ergodic components of a resonant dynamical system. Astron. Astrophys. 90, 198 (1980)

    MathSciNet  ADS  Google Scholar 

  • Contopoulos G., Pinotsis A.D.: Infinite bifurcations in the restricted three-body problem. Astron. Astrophys. 133, 49 (1984)

    MATH  MathSciNet  ADS  Google Scholar 

  • Coullet, P., Tresser, C. Iterations d’ endomorphismes et groupe de renormalisation: J. Phys. Coll. (Paris), 39, C5 (1978)

  • Eckmann J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Efthymiopoulos C.: Formal Integrals and Nekhoroshev stability in a mapping model for the Trojan asteroids. Celest. Mech. Dyn. Astron. 92, 29 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Erdi B., Forgacs-Dajika E., Nagy I., Rajnai R.: A parametric study of stability and resonances around L4 in the elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 104, 145 (2009)

    Article  MATH  ADS  Google Scholar 

  • Feigenbaum M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hadjidemetriou J.: Periodic orbits and stability, Programme Univer. Europ. Erasmus, Thessaloniki (1989)

    Google Scholar 

  • Heggie D.C.: On the bifurcations of a certain family of periodic orbits. Celest. Mech. 29, 207 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hénon M.: Exploration Numerique du probleme restreint, (II) Masses egales, stabilite des orbites periodiques. Ann. Astrophys. 28, 992–1007 (1965)

    ADS  Google Scholar 

  • Henrard J., Navarro J.F.: Families of periodic orbits emanating from homoclinic in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 89, 285 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Magnenat P.: Periodic orbits in triaxial galactic models. Astron. Astrophys. 108, 89 (1982)

    ADS  Google Scholar 

  • Pinotsis A.D.: Bifurcations, stability and universality of families of periodic orbits in the restricted three-body problem. Astron. Astrophys. 159, 231–238 (1986)

    MATH  MathSciNet  ADS  Google Scholar 

  • Pinotsis A.D.: Successive bifurcations and evolution of double and quadruple periodic orbits in the restricted three-body problem. Astron. Astrophys. 174, 317–322 (1987)

    MATH  ADS  Google Scholar 

  • Pinotsis A.D.: Bifurcations and instabilities in the restricted three-body problem. In: Roy, A.E. (eds) Long Term Dynamical Behaviour of Natural andn Artificial N-Body Systems, pp. 465–469. Kluver Academic Publishers, Dordrecht (1988)

    Google Scholar 

  • Sandor Z., Erdi B., Efthymiopoulos C.: The phase space structure around L4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 78, 113 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Sicardy B.: Stability of the triangular Lagrange points beyond Gascheaus’s value. Celest. Mech. Dyn. Astron. 107(1–2), 145–155 (2010)

    Article  MATH  ADS  Google Scholar 

  • Szebehely V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis D. Pinotsis.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinotsis, A.D. Infinite Feigenbaum sequences and spirals in the vicinity of the Lagrangian periodic solutions. Celest Mech Dyn Astr 108, 187–202 (2010). https://doi.org/10.1007/s10569-010-9294-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9294-2

Keywords

Navigation