Skip to main content
Log in

Regions of stability in rotational dynamics

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We investigate the rotational dynamics of a triaxial planet moving on a Keplerian orbit around its star. The dynamics is ruled by several parameters, like the eccentricity, the obliquity, the non-principal rotation, the angular momentum, etc. We consider two specific cases in which the planet is symmetric or asymmetric, according to whether two moments of inertia coincide or differs from each other. We study the dynamics by constructing maps of dynamical stability based on the computation of the maximum Lyapunov characteristic number versus some typical parameters. The results show that only specific resonances appear in the symmetric case, while the asymmetric case shows a much richer phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atobe K., Ida S.: Obliquity evolution of extrasolar terrestrial planets. Icarus 188(1), 1–17 (2007)

    Article  ADS  Google Scholar 

  • Breiter S., Melendo B., Bartczak P., Wytrzyszczak I.: Synchronous motion in the Kinoshita problem. Application to satellites and binary asteroids. Astron. Astrophys. 437, 753–764 (2005)

    Article  ADS  Google Scholar 

  • Celletti A.: Analysis of resonances in the spin–orbit problem in celestial mechanics: the synchronous resonance (part I). J. Appl. Math. Phys. (ZAMP) 41, 174–204 (1990a)

    Article  MATH  MathSciNet  Google Scholar 

  • Celletti A.: Higher order resonances and some numerical experiments (part II). J. Appl. Math. Phys. (ZAMP) 41, 453–479 (1990b)

    Article  MATH  MathSciNet  Google Scholar 

  • Celletti A., Chierchia L.: Measures of basins of attraction in spin–orbit dynamics. Celest. Mech. Dyn. Astron. 101, 159–170 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Celletti A., Kotoulas T., Voyatzis G., Hadjidemetriou J.: A study of the dynamical stability in the Kuiper belt. MNRAS 378(3), 1153–1164 (2007)

    Article  ADS  Google Scholar 

  • Correia A.C.M., Laskar J.: Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)

    Article  ADS  Google Scholar 

  • Deprit A.: Free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35(5), 424–428 (1967)

    Article  ADS  Google Scholar 

  • Deprit A., Elipe A.: Complete reduction of the Euler–Poinsot problem. J. Astron. Sci. 41(4), 603–628 (1993)

    MathSciNet  Google Scholar 

  • D’Hoedt S., Lemaitre A.: The spin–orbit resonant rotation of Mercury: a two degree of freedom Hamiltonian model. Celest. Mech. Dyn. Astron. 89(3), 267–283 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dufey J., Noyelles B., Rambaux N., Lemaitre A.: Latitudinal librations of Mercury with a fluid core. Icarus 203, 1–12 (2009)

    Article  ADS  Google Scholar 

  • Erdi B., Dvorak R., Sandor Z., Pilat-Lohinger E., Funk B.: The dynamical structure of the habitable zone in the HD38529, HD168443 and HD169830 systems. MNRAS 351, 1043–1048 (2004)

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Rodríguez A., Hussmann H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory revised. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)

    Article  MATH  ADS  Google Scholar 

  • Kitiashvili I.N., Gusev A.: Rotational evolution of exoplanets under the action of gravitational and magnetic perturbations. Celest. Mech. Dyn. Astron. 100, 121–140 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lemaitre A., D’Hoedt S., Rambaux N.: The 3:2 spin–orbit resonant motion of Mercury. Celest. Mech. Dyn. Astron. 95, 213–224 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Noyelles B.: Titans rotational state. Celest. Mech. Dyn. Astron. 101(1–2), 13–30 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Pavlov A.I., Maciejewski A.J.: An efficient method for studying the stability and dynamics of the rotational motions of celestial bodies. Astron. Lett. 29(8), 552–566 (2003)

    Article  ADS  Google Scholar 

  • Pilat-Lohinger E., Suli A., Robutel P., Freistetter F.: The influence of giant planets near MMR on Earth-like planets in the habitable zone of Sun-like stars. Astrophys. J. 681, 1639–1645 (2008)

    Article  ADS  Google Scholar 

  • Voyatzis G.: Chaos, order and periodic orbits in 3:1 resonant planetary dynamics. Astrophys. J. 675, 802–816 (2008)

    Article  ADS  Google Scholar 

  • Wisdom J., Peale S.J., Mignard F.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Celletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celletti, A., Voyatzis, G. Regions of stability in rotational dynamics. Celest Mech Dyn Astr 107, 101–113 (2010). https://doi.org/10.1007/s10569-010-9267-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9267-5

Keywords

Navigation