Skip to main content

Advertisement

Log in

Addressing heterogeneity of individual blood cancers: the need for single cell analysis

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cancer heterogeneity is a significant factor in response to treatment and escape leading to relapse. Within an individual cancer, especially blood cancers, there exists multiple subclones as well as distinct clonal expansions unrelated to the clinically detected, dominant clone. Over time, multiple subclones and clones undergo emergence, expansion, and extinction. Although sometimes this intra-clonal and inter-clonal heterogeneity can be detected and/or quantified in tests that measure aggregate populations of cells, frequently, such heterogeneity can only be detected using single cell analysis to determine its frequency and to detect minor clones that may subsequently emerge to become drug resistant and dominant. Most genetic/genomic tests look at the pooled tumor population as a whole rather than at its individual cellular components. Yet, minor clones and cancer stem cells are unlikely to be detected against the background of expanded major clones. Because selective pressures are likely to govern much of what is seen clinically, single cell analysis allows identification of otherwise cryptic compartments of the malignancy that may ultimately mediate progression and relapse. Single cell analysis can track intra- or inter-clonal heterogeneity and provide useful clinical information, often before changes in the disease are detectable in the clinic. To a very limited extent, single cell analysis has already found roles in clinical care. Because inter- and intra-clonal heterogeneity likely occurs more frequently than can be currently appreciated on a clinical level, future use of single cell analysis is likely to have profound clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALL:

acute lymphocytic leukemia

CLL:

chronic lymphocytic leukemia

CTC:

circulating tumor cells

EGFR:

epidermal growth factor receptor

FISH:

fluorescence in situ hybridization

IgH:

immunoglobulin heavy chain

MBCL:

monoclonal B-cell lymphocytosis

MM:

multiple myeloma

MRD:

minimal residual disease

PCR:

polymerase chain reaction

TKI:

tyrosine kinase inhibitor

WM:

Waldenstrom macroglobulinemia

References

  • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahlis NJ. Darwinian evolution and tiding clones in multiple myeloma. Blood. 2012;120(5):927–8.

    Article  CAS  PubMed  Google Scholar 

  • Binder M, Rajkumar SV, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Hayman SR, Hwa YL, Zeldenrust SR, Lust JA, Russell SJ, Leung N, Kapoor P, Go RS, Gonsalves WI, Kyle RA, Kumar SK. Occurrence and prognostic significance of cytogenetic evolution in patients with multiple myeloma. Blood Cancer J. 2016;6:e401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer A, De Laere B, Peeters D, Peeters M, Salgado R, Dirix L, Van LS. 2016. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget.

  • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  • Cowan AJ, Stevenson PA, Cassaday RD, Graf SA, Fromm JR, Wu D, Holmberg LA, Till BG, Chauncey TR, Smith SD, Philip M, Orozco JJ, Shustov AR, Green DJ, Libby III EN, Bensinger WI, Shadman M, Maloney DG, Press OW, Gopal AK. Pretransplantation minimal residual disease predicts survival in patients with mantle cell lymphoma undergoing autologous stem cell transplantation in complete remission. Biol Blood Marrow Transplant. 2016;22(2):380–5.

    Article  PubMed  Google Scholar 

  • De LF, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, Simi L, Mancini I, Vannucchi AM, Pazzagli M, Di LA, Pinzani P. 2016. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget.

  • Debes Marun CS, Belch AR, Pilarski LM. In multiple myeloma, bone-marrow lymphocytes harboring the same chromosomal abnormalities as autologous plasma cells predict poor survival. Am J Hematol. 2012;87:579–87.

    Article  CAS  PubMed  Google Scholar 

  • DiGiuseppe JA, Tadmor MD, Pe’er D. Detection of minimal residual disease in B lymphoblastic leukemia using viSNE. Cytometry B Clin Cytom. 2015;88(5):294–304.

    Article  CAS  PubMed  Google Scholar 

  • Egan JB, Shi CX, Tembe W, Christoforides A, Kurdoglu A, Sinari S, Middha S, Asmann Y, Schmidt J, Braggio E, Keats JJ, Fonseca R, Bergsagel PL, Craig DW, Carpten JD, Stewart AK. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120(5):1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engle EK, Fisher DA, Miller CA, McLellan MD, Fulton RS, Moore DM, Wilson RK, Ley TJ, Oh ST. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia. Leukemia. 2015;29(4):869–76.

    Article  CAS  PubMed  Google Scholar 

  • Gavasso S, Gullaksen SE, Skavland J, Gjertsen BT. Single-cell proteomics: potential implications for cancer diagnostics. Expert Rev Mol Diagn. 2016;16(5):579–89.

    Article  CAS  PubMed  Google Scholar 

  • Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48(15):948–56.

    Article  CAS  PubMed  Google Scholar 

  • Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, Van WS, Blackburn PR, Baker AS, Dispenzieri A, Kumar S, Rajkumar SV, Carpten JD, Barrett M, Fonseca R, Stewart AK, Bergsagel PL. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo BL, Chaudhuri PK, Ramalingam N, Tan DS, Lim CT, Warkiani ME. Single-cell profiling approaches to probing tumor heterogeneity. Int J Cancer. 2016;139(2):243–55.

    Article  CAS  PubMed  Google Scholar 

  • Kirshner J, Thulien K, Martin LD, Debes-Marun CS, Reiman T, Belch AR, Pilarski LM. A unique 3-D model for evaluating the impact of therapy on multiple myeloma. Blood. 2008;112:2935–45.

    Article  CAS  PubMed  Google Scholar 

  • Kirshner J, Thulien KJ, Kriangkum J, Motz S, Belch AR, Pilarski LM. In a patient with biclonal Waldenstrom macroglobulinemia only one clone expands in three-dimensional culture and includes putative cancer stem cells. Leuk Lymphoma. 2011;52(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92.

    Article  CAS  PubMed  Google Scholar 

  • Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM. Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood. 2004;104:2134–42.

    Article  CAS  PubMed  Google Scholar 

  • Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Reiman T, Belch AR, Pilarski LM. Molecular characterization of Waldenstrom’s macroglobulinemia reveals frequent occurrence of two B-cell clones having distinct IgH VDJ sequences. Clin Cancer Res. 2007;13(7):2005–13.

    Article  CAS  PubMed  Google Scholar 

  • Kriangkum J, Motz S, Debes Marun CS, Lafarge ST, Gibson SB, Venner CP, Johnston JB, Belch AR, Pilarski LM. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma. PLoS One. 2013;8:e649927.

    Article  Google Scholar 

  • Kriangkum J, Motz SN, Mack T, Beiggi S, Baigorri E, Kuppusamy H, Belch AR, Johnston JB, Pilarski LM. Single-cell analysis and next-generation immuno-sequencing show that multiple clones persist in patients with chronic lymphocytic leukemia. PLoS One. 2015;10(9):e0137232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanasa MC, Allgood SD, Volkheimer AD, Gockerman JP, Whitesides JF, Goodman BK, Moore JO, Weinberg JB, Levesque MC. Single-cell analysis reveals oligoclonality among ‘low-count’ monoclonal B-cell lymphocytosis. Leukemia. 2010;24(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  • Levine JH, Simonds EF, Bendall SC, Davis KL, Amir E, Tadmor MD, Litvin O, Fienberg HG, Jager A, Zunder ER, Finck R, Gedman AL, Radtke I, Downing JR, Pe’er D, Nolan GP. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell. 2015;162(1):184–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TL, Nagata Y, Kao HW, Sanada M, Okuno Y, Huang CF, Liang DC, Kuo MC, Lai CL, Lee EH, Shih YS, Tanaka H, Shiraishi Y, Chiba K, Lin TH, Wu JH, Miyano S, Ogawa S, Shih LY. Clonal leukemic evolution in myelodysplastic syndromes with TET2 and IDH1/2 mutations. Haematologica. 2014;99(1):28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, Cibulskis K, McKenna A, Chapman MA, Straussman R, Levy J, Perkins LM, Keats JJ, Schumacher SE, Rosenberg M, Getz G, Golub TR. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I, Fujita Y, Okinaga S, Hirano H, Yoshimori K, Harada T, Ogura T, Ando M, Miyazawa H, Tanaka T, Saijo Y, Hagiwara K, Morita S, Nukiwa T. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.

    Article  CAS  PubMed  Google Scholar 

  • Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R, Puig N, Montalban MA, Paiva B, Weng L, Jimenez C, Sopena M, Moorhead M, Cedena T, Rapado I, Mateos MV, Rosinol L, Oriol A, Blanchard MJ, Martinez R, Blade J, San MJ, Faham M, Garcia-Sanz R. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34.

    Article  CAS  PubMed  Google Scholar 

  • Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, Watkins DN, Huff CA, Jones RJ. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008;68(1):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paino T, Paiva B, Sayagues JM, Mota I, Carvalheiro T, Corchete LA, Ires-Mejia I, Perez JJ, Sanchez ML, Barcena P, Ocio EM, San-Segundo L, Sarasquete ME, Garcia-Sanz R, Vidriales MB, Oriol A, Hernandez MT, Echeveste MA, Paiva A, Blade J, Lahuerta JJ, Orfao A, Mateos MV, Gutierrez NC, San-Miguel JF. Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia. 2015;29(5):1186–94.

    Article  CAS  PubMed  Google Scholar 

  • Pilarski LM, Belch AR. Clonotypic myeloma cells able to xenograft myeloma to NOD SCID mice are detectable among CD34+ hematopoietic progenitors. Clin Cancer Research. 2002;8:3198–204.

    Google Scholar 

  • Pilarski LM, Giannakopoulos NV, Szczepek AJ, Masellis AM, Mant MJ, Belch AR. In multiple myeloma, circulating hyperdiploid B cells have clonotypic immunoglobulin heavy chain rearrangements and may mediate spread of disease. Clin Cancer Research. 2000;6:585–96.

    CAS  Google Scholar 

  • Pilarski LM, Seeberger K, Keats JJ, Taylor BJ, Coupland RW, Belch AR. Leukemic B cells clonally identical to myeloma plasma cells are myelomagenic in NOD SCID mice. Exp Hematol. 2002;30:221–8.

    Article  CAS  PubMed  Google Scholar 

  • Pilarski LM, Reiman T, Pilarski PM, Orr FW, Belch AR. The malignant hierarchy in multiple myeloma: relationships between malignant cells and bone disease. In: Singh G, Orr FW, editors. Bone metastasis and molecular mechanisms. Pathophysiology. Leiden: Kluwer Academic Publishers; 2004. p. 109–38.

    Chapter  Google Scholar 

  • Pilarski LM, Debes-Marun CS, Martin LD, Venner CP, Pilarski PM, Belch AR. B lymphocytes as cancer stem cells in multiple myeloma. The Journal of OncoPathology. 2013;1:10–21.

    Article  Google Scholar 

  • Pohl G, Shih I. Principle and applications of digital PCR. Expert Rev Mol Diagn. 2004;4(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  • Pott C, Hoster E, Fau-Larue MH, Beldjord K, Bottcher S, Asnafi V, Plonquet A, Siebert R, Callet-Bauchu E, Andersen N, van Dongen JJ, Klapper W, Berger F, Ribrag V, van Hoof AL, Trneny M, Walewski J, Dreger P, Unterhalt M, Hiddemann W, Kneba M, Kluin-Nelemans HC, Hermine O, Macintyre E, Dreyling M. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115(16):3215–23.

    Article  CAS  PubMed  Google Scholar 

  • Saadatpour A, Guo G, Orkin SH, Yuan GC. Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol. 2014;15(12):525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saadatpour A, Lai S, Guo G, Yuan GC. Single-cell analysis in cancer genomics. Trends Genet. 2015;31(10):576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvianti F, Rotunno G, Galardi F, De LF, Pestrin M, Vannucchi AM, Di LA, Pazzagli M, Pinzani P. Feasibility of a workflow for the molecular characterization of single cells by next generation sequencing. Biomol Detect Quantif. 2015;5:23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Rancourt A, Sato Y, Satoh MS. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny. Sci Rep. 2016;6:23328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.

    Article  CAS  PubMed  Google Scholar 

  • Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, Riely GJ, Varella-Garcia M, Shapiro GI, Costa DB, Doebele RC, Le LP, Zheng Z, Tan W, Stephenson P, Shreeve SM, Tye LM, Christensen JG, Wilner KD, Clark JW, Iafrate AJ. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd FA, Rodrigues PJ, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, Van KM, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  • Sieben VJ, Debes Marun CS, Pilarski PM, Kaigala GV, Pilarski LM, Backhouse CJ. FISH and chips: chromosomal analysis on microfluidic platforms. IET Nanobiotechnol. 2007;1(3):27–35.

    Article  CAS  PubMed  Google Scholar 

  • Sieben VJ, Debes Marun CS, Pilarski LM, Backhouse CJ. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip. 2008;8(12):2151–6.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Matsushima K, Makinoshima H, Sugano S, Kohno T, Tsuchihara K, Suzuki Y. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol. 2015;16:66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczepek AJ, Bergsagel PL, Axelsson L, Brown CB, Belch AR, Pilarski LM. CD34+ cells in the blood of patients with multiple myeloma express CD19 and IgH mRNA and have patient-specific IgH VDJ rearrangements. Blood. 1997;89:1824–33.

    CAS  PubMed  Google Scholar 

  • Szczepek AJ, Seeberger K, Wizniak J, Mant MJ, Belch AR, Pilarski LM. A high frequency of circulating B cells share clonotypic IgH VDJ rearrangements with autologous bone marrow plasma cells in multiple myeloma, as measured by single cell and in situ RT-PCR. Blood. 1998;92:2844–55.

    CAS  PubMed  Google Scholar 

  • Taylor BJ, Pittman J, Seeberger K, Reiman T, Belch AR, Pilarski LM. Intraclonal homogeneity of clonotypic IgM and diversity of non-clinical post-switch isotypes in multiple myeloma: insight into the evolution of the myeloma clone Brian J. Taylor, Julie A. Pittman, Karen Seeberger, Tony Reiman, Andrew R. Belch, and Linda M. Pilarski. Clin Cancer Res. 2002;8:502–13.

    CAS  PubMed  Google Scholar 

  • Templer RH, Ces O. New frontiers in single-cell analysis. J R Soc Interface. 2008;5(Suppl 2):S111–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, De Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg HWC, Riehm H, Bartram CR. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8.

    Article  PubMed  Google Scholar 

  • Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single-cell sequencing for precise cancer research: progress and prospects. Cancer Res. 2016;76(6):1305–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the research support provided by the Myeloma Alberta Support Society, and thank the patients who so generously donate samples of their tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, M.P., Kriangkum, J., Venner, C.P. et al. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol 33, 83–97 (2017). https://doi.org/10.1007/s10565-016-9367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9367-4

Keywords

Navigation