Skip to main content

Advertisement

Log in

Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Recent studies have established the role of mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) in the development of cardiovascular disease. Among these mid-chains, 8-HETE has been reported to have a proliferator and proinflammatory action. However, whether 8-HETE can induce cardiac hypertrophy has never been investigated before. Therefore, the overall objectives of the present study are to elucidate the potential hypertrophic effect of 8-HETE in the human ventricular cardiomyocytes, RL-14 cells, and to explore the mechanism(s) involved. Our results showed that 8-HETE induced cellular hypertrophy in RL-14 cells as evidenced by the induction of cardiac hypertrophy markers ANP, BNP, α-MHC, and β-MHC in a concentration- and time-dependent manner as well as the increase in cell surface area. Mechanistically, 8-HETE was able to induce the NF-κB activity as well as it significantly induced the phosphorylation of ERK1/2. The induction of cellular hypertrophy was associated with a proportional increase in the formation of dihydroxyeicosatrienoic acids (DHETs) parallel to the increase of soluble epoxide hydrolase (sEH) enzyme activity. Blocking the induction of NF-κB, ERK1/2, and sEH signaling pathways significantly inhibited 8-HETE-induced cellular hypertrophy. Our study provides the first evidence that 8-HETE induces cellular hypertrophy in RL-14 cells through MAPK- and NF-κB-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ai D, Pang W, Li N, Xu M, Jones PD, Yang J, et al. Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106:564–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 2003;92:1079–88.

    Article  CAS  PubMed  Google Scholar 

  • Althurwi HN, Tse MM, Abdelhamid G, Zordoky BN, Hammock BD, El-Kadi AO. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol. 2013;168:1794–807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andrews NC, Faller DV. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991;19:2499.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40:2023–39.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya N, Sarno A, Idler IS, Fuhrer M, Zenz T, Dohner H, et al. High-throughput detection of nuclear factor-kappaB activity using a sensitive oligo-based chemiluminescent enzyme-linked immunosorbent assay. Int J Can J Int du Can. 2010;127:404–11.

    CAS  Google Scholar 

  • Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW. Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci U S A. 1981;78:5362–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capdevila J, Yadagiri P, Manna S, Falck JR. Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachidonic acid by microsomal cytochrome P-450. Biochem Biophys Res Commun. 1986;141:1007–11.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos. 2004;32:840–7.

    Article  CAS  PubMed  Google Scholar 

  • Claycomb WC, Lanson Jr NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A. 1998;95:2979–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest. 1999;103:1597–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davidson MM. Immortalization of human post-mitotic cells. Google patents. 2007.

  • Elshenawy OH, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO. Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. Vasc Pharmacol. 2013a;58:326–33.

    Article  CAS  Google Scholar 

  • Elshenawy OH, Anwar-Mohamed A, El-Kadi AO. 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab. 2013b;14:706–19.

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbeni AA, El-Kadi AO. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol. 2014a;87:456–66.

    Article  CAS  PubMed  Google Scholar 

  • El-Sherbeni AA, El-Kadi AO. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos. 2014b;42:1498–507.

    Article  PubMed  Google Scholar 

  • Esposito G, Rapacciuolo A, Naga Prasad SV, Takaoka H, Thomas SA, Koch WJ, et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation. 2002;105:85–92.

    Article  CAS  PubMed  Google Scholar 

  • Fava C, Ricci M, Melander O, Minuz P. Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: a sex-specific relation? Prostaglandins Other Lipid Mediat. 2012;98:75–85.

    Article  CAS  PubMed  Google Scholar 

  • Furstenberger G, Hagedorn H, Jacobi T, Besemfelder E, Stephan M, Lehmann WD, et al. Characterization of an 8-lipoxygenase activity induced by the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate in mouse skin in vivo. J Biol Chem. 1991;266:15738–45.

    CAS  PubMed  Google Scholar 

  • Goetzl EJ, Sun FF. Generation of unique mono-hydroxy-eicosatetraenoic acids from arachidonic acid by human neutrophils. J Exp Med. 1979;150:406–11.

    Article  CAS  PubMed  Google Scholar 

  • Grabellus F, Levkau B, Sokoll A, Welp H, Schmid C, Deng MC, et al. Reversible activation of nuclear factor-kappaB in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res. 2002;53:124–30.

    Article  CAS  PubMed  Google Scholar 

  • Gross GJ, Falck JR, Gross ER, Isbell M, Moore J, Nithipatikom K. Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. Cardiovasc Res. 2005;68:18–25.

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Zhang W, Chen J, Ma R, Xiao X, Ma X, et al. EPC-derived microvesicles protect cardiomyocytes from Ang II-induced hypertrophy and apoptosis. PLoS One. 2014;9:e85396.

    Article  PubMed Central  PubMed  Google Scholar 

  • Guido DM, McKenna R, Mathews WR. Quantitation of hydroperoxy-eicosatetraenoic acids and hydroxy-eicosatetraenoic acids as indicators of lipid peroxidation using gas chromatography-mass spectrometry. Anal Biochem. 1993;209:123–9.

    Article  CAS  PubMed  Google Scholar 

  • Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002;105:509–15.

    Article  CAS  PubMed  Google Scholar 

  • Horenstein MS, Vander Heide RS, L’Ecuyer TJ. Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab. 2000;71:436–44.

    Article  CAS  PubMed  Google Scholar 

  • Hunter JA, Finkbeiner WE, Nadel JA, Goetzl EJ, Holtzman MJ. Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea. Proc Natl Acad Sci U S A. 1985;82:4633–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 2002;39:690–4.

    Article  CAS  PubMed  Google Scholar 

  • Izumo S, Lompre AM, Matsuoka R, Koren G, Schwartz K, Nadal-Ginard B, et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987;79:970–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkins CM, Cedars A, Gross RW. Eicosanoid signalling pathways in the heart. Cardiovasc Res. 2009;82:240–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jennings BL, Anderson LJ, Estes AM, Yaghini FA, Fang XR, Porter J, et al. Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice. Hypertension. 2012;59:348–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawano S, Kubota T, Monden Y, Kawamura N, Tsutsui H, Takeshita A, et al. Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res. 2005;67:689–98.

    Article  CAS  PubMed  Google Scholar 

  • Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, et al. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med. 2009;206:1565–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98:367–81.

    Article  CAS  PubMed  Google Scholar 

  • Korashy HM, El-Kadi AO. Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells. Toxicology. 2004;201:153–72.

    Article  CAS  PubMed  Google Scholar 

  • Korashy HM, El-Kadi AO. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev. 2006;38:411–50.

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Landon CS, Nazian SJ, Dietz JR. Cytochrome P-450 metabolites in endothelin-stimulated cardiac hormone secretion. Am J Physiol Regul Integr Comp Physiol. 2004;286:R888–893.

    Article  CAS  PubMed  Google Scholar 

  • Li S, E M, Yu B. Adriamycin induces myocardium apoptosis through activation of nuclear factor kappaB in rat. Mol Biol Rep. 2008;35(4):489–94.

    Article  PubMed  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69:581–93.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  • Maayah ZH, El Gendy MA, El-Kadi AO, Korashy HM. Sunitinib, a tyrosine kinase inhibitor, induces cytochrome P450 1A1 gene in human breast cancer MCF7 cells through ligand-independent aryl hydrocarbon receptor activation. Arch Toxicol. 2013;87:847–56.

    Article  CAS  PubMed  Google Scholar 

  • Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AO. Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods. 2015;71:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi V, Lompre AM, Chambers AP, Nadal-Ginard B. Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability. Eur Heart J. 1984; 5 Suppl F:181–191.

  • Malik KU, Jennings BL, Yaghini FA, Sahan-Firat S, Song CY, Estes AM, et al. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat. 2012;98:69–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muga SJ, Thuillier P, Pavone A, Rundhaug JE, Boeglin WE, Jisaka M, et al. 8S-lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth Differ. 2000;11:447–54.

    CAS  PubMed  Google Scholar 

  • Nithipatikom K, Grall AJ, Holmes BB, Harder DR, Falck JR, Campbell WB. Liquid chromatographic-electrospray ionization-mass spectrometric analysis of cytochrome P450 metabolites of arachidonic acid. Anal Biochem. 2001;298:327–36.

    Article  CAS  PubMed  Google Scholar 

  • Nozawa K, Tuck ML, Golub M, Eggena P, Nadler JL, Stern N. Inhibition of lipoxygenase pathway reduces blood pressure in renovascular hypertensive rats. Am J Physiol. 1990;259:H1774–1780.

    CAS  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS  PubMed  Google Scholar 

  • Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280:H1814–1820.

    CAS  PubMed  Google Scholar 

  • Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82:131–85.

    Article  CAS  PubMed  Google Scholar 

  • Schluter KD, Schreiber D. Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol. 2005;290:305–14.

    PubMed  Google Scholar 

  • Schwartzman ML, da Silva JL, Lin F, Nishimura M, Abraham NG. Cytochrome P450 4A expression and arachidonic acid omega-hydroxylation in the kidney of the spontaneously hypertensive rat. Nephron. 1996;73:652–63.

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Borlak J. Cytochrome P450 mono-oxygenase gene expression and protein activity in cultures of adult cardiomyocytes of the rat. Br J Pharmacol. 2000;130:1745–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thum T, Borlak J. Testosterone, cytochrome P450, and cardiac hypertrophy. FASEB J. 2002;16:1537–49.

    Article  CAS  PubMed  Google Scholar 

  • Tse MM, Aboutabl ME, Althurwi HN, Elshenawy OH, Abdelhamid G, El-Kadi AO. Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vasc Pharmacol. 2013;58:363–73.

    Article  CAS  Google Scholar 

  • Vanezis A, Thaitirarot C, Butt M, Squire I, Samani N, Rodrigo G. 208 the PKC epsilon/AMPK ALPHA/ENOS pathway is implicated as a mechanism by which remote ischaemic conditioning attenuates endothelin-1 mediated cardiomyocyte hypertrophy. Heart. 2014;100 Suppl 3:A114.

    Article  Google Scholar 

  • Wu CC, Schwartzman ML. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat. 2011;96:45–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ, et al. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A. 2006;103:18733–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yousif MH, Benter IF, Roman RJ. Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. Auton Autacoid Pharmacol. 2009;29:33–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res. 2000;87:992–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Elimban V, Nijjar MS, Gupta SK, Dhalla NS. Role of mitogen-activated protein kinase in cardiac hypertrophy and heart failure. Exp Clin Cardiol. 2003;8:173–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zong J, Zhang DP, Zhou H, Bian ZY, Deng W, Dai J, et al. Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem. 2013;114:1058–65.

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, El-Kadi AO. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods. 2007;56:317–22.

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, El-Kadi AO. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther. 2010;125:446–63.

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, Aboutabl ME, El-Kadi AO. Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos. 2008;36:2277–86.

    Article  CAS  PubMed  Google Scholar 

  • Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol. 2010;242:38–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research [Grant 106665] to A.O.S.E. Z.H.M. is the recipient of Izaak Walton Killam Memorial Scholarship and Alberta Innovates-Health solution Graduate Student Scholarship. We are grateful to Dr. Vishwa Somayaji for technical assistance with LC-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman O. S. El-Kadi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

ESM 2

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maayah, Z.H., Abdelhamid, G. & El-Kadi, A.O.S. Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol 31, 241–259 (2015). https://doi.org/10.1007/s10565-015-9308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-015-9308-7

Keywords

Navigation