Skip to main content
Log in

Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Genistein, due to its recognized chemopreventive and antitumour potential, is a molecule of interest as a lead compound in drug design. Recently, we found that the novel genistein derivative, [7-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-(1 → 4)-(6-O-acetyl-hex-2-ene-α-D-erythro pyranosyl)genistein, named G21, induced aberrations in mitotic spindle formation. In the presented study, we investigated the properties of G21 relevant to its genotoxic activity. The inhibition of topoisomerase IIα activity was evaluated in decatenation assay and immunoband depletion assay, the covalent DNA–topoisomerase IIα complexes and histone ɣH2AX were detected immunofluorescently. Genotoxic effects of the tested compounds were assessed in micronucleation assay. The presence of centromeres in the micronuclei and the multiplication of centrosomes were evaluated in fluorescence immunolabelled specimens. The inhibition of tubulin polymerization was measured spectrophotometrically. We found that both tested drugs were able to inhibit topoisomerase II activity; however, G21, in contrast to genistein, blocked this enzyme at the concentration far exceeding cytotoxic IC50. We also found that both compounds caused micronucleation in DU 145 prostate cancer cells, but in contrast to genistein, G21 exhibited aneugenic activity, manifested by the presence of centromeres in micronuclei formed in cells treated with the drug. Aneugenic properties of G21 resulted from the inhibition of tubulin polymerization and centrosome disruption, not observed in the presence of genistein. The study supports and extends our previous observations that the mechanisms of cytotoxicity of genistein and its new glycosidic derivative—G21 are significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed AA, Goldsmith J, Fokt I, Le XF, Krzysko KA, Lesyng B, Bast Jr RC, Priebe W. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer. Cancer Chemother Pharmacol. 2011;68:1033–44.

    Article  PubMed  CAS  Google Scholar 

  • Bacher G, Beckers T, Emig P, Klenner T, Kutscher B. New small-molecule tubulin inhibitors. Pure Appl Chem. 2001;73:1459–64.

    Article  CAS  Google Scholar 

  • Banerjee S, Li Y, Wang Z, Sarkar FH. Multi-targeted therapy of cancer by genistein. Cancer Lett. 2008;269:226–42.

    Article  PubMed  CAS  Google Scholar 

  • van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroeder FH, Mickisch GHJ. Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer. 1999;35:664–71.

    Article  PubMed  Google Scholar 

  • Büchler P, Gukovskaya AS, Mouria M, Büchler MC, Büchler MW, Friess H, Pandol SJ, Reber HA, Hines OJ. Prevention of metastatic pancreatic cancer growth in vivo by induction of apoptosis with genistein, a naturally occurring isoflavonoid. Pancreas. 2003;26:264–73.

    Article  PubMed  Google Scholar 

  • Chen JG, Horvitz SB. Differential mitotic responses to microtubule-stabilizing and destabilizing drugs. Cancer Res. 2002;62:1935–8.

    PubMed  CAS  Google Scholar 

  • Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R. Flavonoids as DNA topoisomerase antagonists and poisons: structure–activity relationships. J Nat Prod. 1995;58:217–25.

    Article  PubMed  CAS  Google Scholar 

  • Davis DA, Sarkar SH, Hussain M, Li Y, Sarkar FH. Increased therapeutic potential of an experimental anti-mitotic inhibitor SB715992 by genistein in PC-3 human prostate cancer cell line. BMC Cancer. 2006;6:22.

    Article  PubMed  Google Scholar 

  • Deming PB, Cistulli CA, Zhao H, Graves PR, Piwnica-Worms H, Paules RS, Downes SC, Kaufmann WK. The human decatenation checkpoint. PNAS. 2001;98:12044–9.

    Article  PubMed  CAS  Google Scholar 

  • di Virgilio AL, Iwami K, Wätjen W, Kahl R, Degen GH. Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett. 2004;151:151–62.

    Article  PubMed  Google Scholar 

  • Dixon RA, Ferreira D. Genistein. Phytochemistry. 2002;60:205–11.

    Article  PubMed  CAS  Google Scholar 

  • Efthimiou M, Andrianopoulos C, Stephanou G, Demopoulos NA. Nikolaropoulos SS Aneugenic potential of the nitrogen mustard analogues melphalan, chlorambucil and p-N, N-bis(chloroethyl)aminophenylacetic acid in a cell cultures in vitro. Mutat Res. 2007;617:125–37.

    Article  PubMed  CAS  Google Scholar 

  • Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005;11:7033–41.

    Article  PubMed  CAS  Google Scholar 

  • Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2:1084–104.

    Article  PubMed  CAS  Google Scholar 

  • Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455:81–95.

    Article  PubMed  CAS  Google Scholar 

  • Güerci A, Seoane A, Dulout FN. Aneugenic effects of some metal compounds assessed by chromosome counting in MRC-5 human cells. Mutat Res. 2000;469:35–40.

    Article  PubMed  Google Scholar 

  • Guo Y, Wang S, Hoot DR, Clinton SK. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem. 2007;18:408–17.

    Article  PubMed  CAS  Google Scholar 

  • Hegarat LL, Orsiere T, Botta A, Fessard V. Okadaic acid: chromosomal non-disjunction analysis in human lymphocytes and study of aneugenic pathway in CHO-K1 cells. Mutat Res. 2005;578:53–63.

    Article  PubMed  Google Scholar 

  • Iarmarcovai G, Botta A, Orsière T. Number of centromeric signals in micronuclei and mechanisms of aneuploidy. Toxicol Lett. 2006;166:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Johnson GE, Jenkins GJ, Thomas AD, Doak SH. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487. Mutat Res. 2010;702:189–92.

    Article  PubMed  CAS  Google Scholar 

  • Lania-Pietrzak B, Michalak K, Hendrich AB, Mosiądz D, Grynkiewicz G, Motohashi N, Shirataki Y. Modulation of MRP1 protein transport by plant, and synthetically modified flavonoids. Life Sci. 2005;77:1879–91.

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Yuan J, Chen J, Lou Z. Topoisomerase IIα controls the decatenation checkpoint. Nat Cell Biol. 2009;11:204–10.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Cordero C, Lopez-Lazaro M, Pinero J, Ortiz T, Ayuso MJ. Glucosylated isoflavones as DNA topoisomerase poisons. J Enzyme Inhib. 2000;15:455–60.

    Article  PubMed  CAS  Google Scholar 

  • Metzler M, Pfeiffer E. Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity. Environ Health Perspect. 1995;103:21–2.

    PubMed  CAS  Google Scholar 

  • Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.

    PubMed  CAS  Google Scholar 

  • Moisoi N, Erent M, Whyte S, Martin S, Bayley PM. Calmodulin-containing substructures of the centrosomal matrix released by microtubule perturbation. J Cell Sci. 2002;115:2367–79.

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Acharya RB, Bhattacharyya B, Chakrabarti G. Genistein arrests cell cycle progression of A549 cells at the G2/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin. Biochemistry. 2010;49:1702–12.

    Article  PubMed  CAS  Google Scholar 

  • Nakada S, Katsuki Y, Imoto I, Jokohama T, Nagasawa M, Inazawa J, Mizutani S. Early G2/M checkpoint failure as a molecular mechanism underlying etoposide-induced chromosomal aberrations. J Clin Invest. 2006;116:80–9.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen H, Zhang S, Morris ME. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci. 2003;92:250–7.

    Article  PubMed  CAS  Google Scholar 

  • Norppa H, Falck G. What do human micronuclei contain. Mutagenesis. 2003;18:221–33.

    Article  PubMed  CAS  Google Scholar 

  • Pinski J, Wang Q, Quek ML, Cole A, Cooc JK, Danenberg K, Danenberg PV. Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate. 2006;66:1136–43.

    Article  PubMed  CAS  Google Scholar 

  • Polkowski K, Popiołkiewicz J, Krzeczyński P, Ramza J, Pucko W, Zegrocka-Stendel O, Boryski J, Skierski JS, Mazurek AP, Grynkiewicz G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett. 2004;203:59–69.

    Article  PubMed  CAS  Google Scholar 

  • Raffoul J, Banerjee S, Che M, Knoll ZE, Doerge DR, Abrams J, Kucuk O, Sarkar FH, Hillman GG. Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int J Cancer. 2007;120:2491–8.

    Article  PubMed  CAS  Google Scholar 

  • Rusin A, Gogler A, Głowala-Kosińska M, Bochenek D, Gruca A, Grynkiewicz G, Zawisza J, Szeja W, Krawczyk Z. Unsaturated genistein disaccharide glycoside as a novel agent affecting microtubules. Bioorg Med Chem Lett. 2009;19:4939–43.

    Article  PubMed  CAS  Google Scholar 

  • Rusin A, Krawczyk Z, Grynkiewicz G, Gogler A, Zawisza-Puchałka J, Szeja W. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim Pol. 2010;57:23–34.

    PubMed  CAS  Google Scholar 

  • Rusin A, Krawczyk Z. Genistein derivativatization. From a dietary suplement to a pharmaceutical agent. In: El-Shemy H, editor. Soybean/Book 4. Rijeka: In-Tech; 2011. p. 253–82.

    Google Scholar 

  • Rusin A, Zawisza Puchalka J, Kujawa K, Gogler-Piglowska A, Wietrzyk J, Świtalska M, Głowala-Kosińska M, Gruca A, Szeja W, Krawczyk Z, Grynkiewicz G. Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells. Bioorg Med Chem. 2011;19:295–305.

    Article  PubMed  CAS  Google Scholar 

  • Thompson SL. Compton DA Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol. 2008;180:665–72.

    Article  PubMed  CAS  Google Scholar 

  • van Rijn J, van den Berg J. Flavonoids as enhancers of X-ray-induced cell damage in hepatoma cells. Clin Cancer Res. 1997;3:1775–9.

    PubMed  Google Scholar 

  • Vantyghem SA, Wilson SM, Postenka CO, Al-Katib W, Tuck AB, Chambers AF. Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res. 2005;65:3396–403.

    PubMed  CAS  Google Scholar 

  • Wang Y, Raffoul JJ, Che M, Doerge DR, Joiner MC, Kucuk O, Sarkar FH, Hillman GG. Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res. 2006;166:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Webb RJ, Judah JD, Lo LC, Thomas GMH. Constitutive secretion of serum albumin requires reversible protein tyrosine phosphorylation events in trans-Golgi. Am J Physiol Cell Physiol. 2005;289:C748–56.

    Article  PubMed  CAS  Google Scholar 

  • Wendell KL, Wilson L, Jordan MA. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J Cell Sci. 1993;104:261–74.

    PubMed  CAS  Google Scholar 

  • Willmore E, Frank AJ, Padget K, Tilby MJ, Austin CA. Etoposide targets topoisomerase II alpha and II beta in leukemic cells: isoform-specific cleavable complexes visualised and quantified in-situ by a novel immunofluorescence technique. Mol Pharmacol. 1998;54:78–85.

    PubMed  CAS  Google Scholar 

  • Yan SX, Ejima Y, Sasaki R, Zheng SS, Demizu Y, Soejima T, Sugimura K. Combination of genistein with ionizing radiation on androgen-independent prostate cancer cells. Asian J Androl. 2004;6:285–90.

    PubMed  CAS  Google Scholar 

  • Yashar CM, Spanos WJ, Taylor DD, Gercel-Taylor C. Potentiation of the radiation effect with genistein in cervical cancer cells. Gynecol Oncol. 2005;99:199–205.

    Article  PubMed  CAS  Google Scholar 

  • Zhang LN, Xiao ZP, Ding H, Ge HM, Xu C, Zhu HL, Tan RX. Synthesis and cytotoxic evaluation of novel 7-O-modified genistein derivatives. Chem Biodivers. 2007;4:248–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant of Foundation for Supporting of Polish Pharmacy and Medicine 06/FB/2004 and PBZ MNiI-1/1/2005. AG-P was supported by the Regional Graduate Studies Fund within the framework of the Integrated Regional Operational Programme financed by the European Social Fund.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Rusin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogler-Pigłowska, A., Rusin, A., Bochenek, D. et al. Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide. Cell Biol Toxicol 28, 331–342 (2012). https://doi.org/10.1007/s10565-012-9227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9227-9

Keywords

Navigation