Skip to main content
Log in

UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernakova L, Fabre F, et al. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J. 1996;15:3912–22.

    PubMed  CAS  Google Scholar 

  • Adams A, Gottschling DE, Kaiser CA, Stearns T. Methods in yeast genetics. New York: CSHL; 1997.

    Google Scholar 

  • Azevedo D, Nascimento L, Labarre J, Toledano MB, Rodrigues-Pousada C. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain. FEBS Lett. 2007;581:187–95.

    Article  PubMed  CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–37.

    PubMed  CAS  Google Scholar 

  • Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ. Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem. 2000;275:32611–6.

    Article  PubMed  CAS  Google Scholar 

  • Duker AA, Carranza EJ, Hale M. Arsenic geochemistry and health. Environ Int. 2005;31:631–41.

    Article  PubMed  CAS  Google Scholar 

  • Elad T, Benovich E, Magrisso S, Belkin S. Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci Technol. 2008;42:8486–91.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge ML, Sanseverino J, Layton AC, Easter JP, Schultz TW, Sayler GS. Saccharomyces cerevisiae BLYAS, a new bioluminescent bioreporter for detection of androgenic compounds. Appl Environ Microbiol. 2007;73:6012–8.

    Article  PubMed  CAS  Google Scholar 

  • Eltzov E, Kushmaro A, Marks RS. Biosensors and related techniques for endocrine disruptors, in endocrine disrupting chemicals in food. Cambridge: Woodhead; 2008. Shaw, I. Editor.

    Google Scholar 

  • Eltzov E, Marks R, Voost S, Wullings B, Heringa M. Flow-through real time bacterial biosensor for toxic compounds in water. Sens Actuators, B. 2009;142:11–8.

    Article  Google Scholar 

  • Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, et al. Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens Bioelectron. 2006;21:2263–9.

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11:4241–57.

    PubMed  CAS  Google Scholar 

  • Gaspar LR, Maia Campos PM. Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm. 2006;307:123–8.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez H, Tarras-Wahlberg N, Stromdahl B, Juzeniene A, Moan J, Larko O, et al. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007;7:1.

    Article  PubMed  Google Scholar 

  • Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 2003;4:305–13.

    Article  PubMed  CAS  Google Scholar 

  • Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, et al. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004;5:R95.

    Article  PubMed  Google Scholar 

  • Ivantsiv Y, Kaplun L, Tzirkin-Goldin R, Shabek N, Raveh D. Turnover of SCFUfo1 complexes requires the UbL-UbA motif protein, Ddi1. Mol Cell Biol. 2006;26:1579–88.

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky SA, Estep P, Church GM, Samson LD. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol. 2000;20:8157–67.

    Article  PubMed  CAS  Google Scholar 

  • Kaplun L, Ivantsiv Y, Bakhrat A, Raveh D. DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J Biol Chem. 2003;278:48727–34.

    Article  PubMed  CAS  Google Scholar 

  • Kaplun L, Ivantsiv Y, Kornitzer D, Raveh D. Functions of the DNA damage response pathway target Ho endonuclease of yeast for degradation via the ubiquitin-26 S proteasome system. Proc Natl Acad Sci USA. 2000;97:10077–82.

    Article  PubMed  CAS  Google Scholar 

  • Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, Raveh D. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol. 2005;25:5355–62.

    Article  PubMed  CAS  Google Scholar 

  • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26 S proteasomal and other genes in yeast. FEBS Lett. 1999;450:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991;55:123–42.

    PubMed  CAS  Google Scholar 

  • Michelini E, Cevenini L, Mezzanotte L, Roda A. Luminescent probes and visualization of bioluminescence. Methods Mol Biol. 2009;574:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Moye-Rowley WS. Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol. 2003;73:251–79.

    Article  PubMed  CAS  Google Scholar 

  • Myung K, Smith S, Kolodner RD. Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2004;101:15980–5.

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF. The ecology of arsenic. Science. 2003;300:939–44.

    Article  PubMed  CAS  Google Scholar 

  • Portugal-Cohen M, Soroka Y, Ma’or Z, Oron M, Zioni T, Bregegere FM, et al. Protective effects of a cream containing Dead Sea minerals against UVB-induced stress in human skin. Exp Dermatol. 2009;18:781–8.

    Article  PubMed  CAS  Google Scholar 

  • Ravid T, Hochstrasser M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat Cell Biol. 2007;9:422–7.

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol. 2009;85:177–95.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C. Yeast activator proteins and stress response: an overview. FEBS Lett. 2004;567:80–5.

    Article  PubMed  CAS  Google Scholar 

  • Sanseverino J, Eldridge ML, Layton AC, Easter JP, Yarbrough J, Schultz TW, et al. Screening of potentially hormonally active chemicals using bioluminescent yeast bioreporters. Toxicol Sci. 2009;107:122–34.

    Article  PubMed  CAS  Google Scholar 

  • Sanseverino J, Gupta RK, Layton AC, Patterson SS, Ripp SA, Saidak L, et al. Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Appl Environ Microbiol. 2005;71:4455–60.

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci. 2006;31:402–10.

    Article  PubMed  CAS  Google Scholar 

  • Skoneczna A, McIntyre J, Skoneczny M, Policinska Z, Sledziewska-Gojska E. Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae. J Mol Biol. 2007;366:1074–86.

    Article  PubMed  CAS  Google Scholar 

  • Soroka Y, Ma’or Z, Leshem Y, Verochovsky L, Neuman R, Bregegere FM, et al. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals. Exp Gerontol. 2008;43:947–57.

    Article  PubMed  CAS  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol. 2005;15:319–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Israel Ministry of Science to DR and RSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Raveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhrat, A., Eltzov, E., Finkelstein, Y. et al. UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay. Cell Biol Toxicol 27, 227–236 (2011). https://doi.org/10.1007/s10565-011-9184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9184-8

Keywords

Navigation