Skip to main content

Advertisement

Log in

Attenuation of cisplatin nephrotoxicity by inhibition of soluble epoxide hydrolase

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it is also a potent nephrotoxicant. Given that there have been no significant advances in our ability to clinically manage acute renal failure since the advent of dialysis, the development of novel strategies to ablate nephrotoxicity would represent a significant development. In this study, we investigated the ability of an inhibitor of soluble epoxide hydrolase (sEH), n-butyl ester of 12-(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), to attenuate cisplatin-induced nephrotoxicity. nbAUDA is quickly converted to AUDA and results in maintenance of high AUDA levels in vivo. Subcutaneous administration of 40 mg/kg of nbAUDA to C3H mice every 24 h resulted in elevated blood levels of AUDA; this protocol was also associated with attenuation of nephrotoxicity induced by cisplatin (intraperitoneal injection) as assessed by BUN levels and histological evaluation of kidneys. This is the first report of the use of sEH inhibitors to protect against acute nephrotoxicity and suggests a therapeutic potential of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arany I, Safirstein RL. Cisplatin nephrotoxicity. Semin Nephrol. 2003;23:460–4.

    Article  PubMed  CAS  Google Scholar 

  • Arany I, Herbert J, Herbert Z, Safirstein RL. Restoration of CREB function ameliorates cisplatin nephrotoxicity in renal tubular cells. Am J Physiol Renal Physiol 2008;294:F577–F581.

    Article  PubMed  CAS  Google Scholar 

  • Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999;31:971–97.

    Article  PubMed  CAS  Google Scholar 

  • Bonventre JV. Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation. Contrib Nephrol. 2007;156:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Chirino YI, Sanchez-Gonzalez DJ, Martinez-Martinez CM, Cruz C, Pedraza-Chaverri J. Protective effects of apocynin against cisplatin-induced oxidative stress and nephrotoxicity. Toxicology 2008;245:18–23.

    Article  PubMed  CAS  Google Scholar 

  • Chirino YI, Trujillo J, Sanchez-Gonzalez DJ, Martinez-Martinez CM, Cruz C, Bobadilla NA, et al. Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicol Lett. 2007;176:48–57.

    Article  PubMed  CAS  Google Scholar 

  • Francescato HD, Costa RS, Junior FB, Coimbra TM. Effect of JNK inhibition on cisplatin-induced renal damage. Nephrol Dial Transplant. 2007;22:2138–48.

    Article  PubMed  CAS  Google Scholar 

  • Genvresse I, Lange C, Schanz J, Schweigert M, Harder H, Possinger K, et al. Tolerability of the cytoprotective agent amifostine in elderly patients receiving chemotherapy: a comparative study. Anticancer Drugs. 2001;12:345–9.

    Article  PubMed  CAS  Google Scholar 

  • Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17:409–22.

    PubMed  CAS  Google Scholar 

  • Hannigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003;1:47–61.

    Google Scholar 

  • Hartmann JT, Fels LM, Knop S, Stolt H, Kanz L, Bokemeyer C. A randomized trial comparing the nephrotoxicity of cisplatin/ifosfamide-based combination chemotherapy with or without amifostine in patients with solid tumors. Invest New Drugs. 2000;18:281–9.

    Article  PubMed  CAS  Google Scholar 

  • Hennig B, Hammock BD, Slim R, Toborek M, Saraswathi V, Robertson LW. PCB-induced oxidative stress in endothelial cells: Modulation by nutrients. Int J Hyg Environ Health. 2002;205:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Dunn RT 2nd, Jayadev S, DiSorbo Q, Pack RD, Farr SB, Stoll RE, Blanchard KT. Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci. 2001;63:196–207.

    Article  PubMed  CAS  Google Scholar 

  • Hung YC, Huang GS, Lin LW, Hong MY, Se PS. Thea sinensis melanin prevents cisplatin-induced nephrotoxicity in mice. Food Chem Toxicol. 2007;45:1123–30.

    Article  PubMed  CAS  Google Scholar 

  • Imig JD. Eicosanoids and renal damage in cardiometabolic syndrome. Expert Opin Drug Metab Toxicol. 2008;4:165–74.

    Article  PubMed  CAS  Google Scholar 

  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 2002;39:690–4.

    Article  PubMed  CAS  Google Scholar 

  • Inceoglu B, Jinks SL, Schmelzer KR, Waite T, Kim IH, Hammock BD. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sci. 2006;79:2311–9.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Dean D, Burghardt RC, Parrish AR. Disruption of cadherin/catenin expression, localization, and interactions during HgCl2-induced nephrotoxicity. Toxicol Sci. 2004;80:170–82.

    Article  PubMed  CAS  Google Scholar 

  • Jo SK, Cho WY, Sung SA, Kim HK, Won NH. MEK inhibitor, UO126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 2005;67:458–66.

    Article  PubMed  CAS  Google Scholar 

  • Kim I-H, Nishi K, Tsai H-J, Bradford T, Koda Y, Watanabe T, et al. Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido) dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase. Bioorg Med Chem. 2007;15:312–23.

    Article  PubMed  CAS  Google Scholar 

  • Kintzel PE. Anticancer drug-induced kidney disorders. Drug Saf. 2001;24:19–38.

    Article  PubMed  CAS  Google Scholar 

  • Kuwana H, Terada Y, Kobayashi T, Okado T, Penninger JM, Irie-Sasaki J, et al. The phosphoinositide-3 kinase gamma-AKT pathway mediates renal tubular injury in cisplatin nephrotoxicity. Kidney Int. 2008;73:430–45.

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim W, Moon SO, Sung MJ, Kim DH, Kang KP, et al. Rosiglitazone ameliorates cisplatin-induced renal injury in mice. Nephrol Dial Transplant. 2006;21:2096–105.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Gokden N, Okusa MD, Bhatt R, Portilla D. Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol. 2005;289:F469–80.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang Y, Schmelzer K, Lee TS, Fang X, Zhu Y, et al. The anti-inflammatory effect of laminar flow: the role of PPARg, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proc Natl Acad Sci USA. 2005;102:16747–52.

    Article  PubMed  CAS  Google Scholar 

  • Lokich J. What is the “best” platinum: Cisplatin, carboplatin, or oxaliplatin? Cancer Invest. 2001;19:756–60.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig T, Oberleithner H. Platinum toxicity in cultured renal epithelia. Cell Physiol Biochem. 2004;14:431–40.

    Article  PubMed  CAS  Google Scholar 

  • Morisseau C, Goodrow MH, Dowdy D, Zheng J, Greene JF, Sanborn JR, et al. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc Natl Acad Sci USA. 1999;96:8849–54.

    Article  PubMed  CAS  Google Scholar 

  • Morisseau C, Goodrow MH, Newman JW, Wheelock CE, Dowdy DL, Hammock BD. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases. Biochem Pharmacol. 2002;63:1599–608.

    Article  PubMed  CAS  Google Scholar 

  • Node K, Huo Y, Ruan Y, Yang B, Spiecker M, Ley K, et al. Antiinflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285:1276–9.

    Article  PubMed  CAS  Google Scholar 

  • Peyrou M, Cribb AE. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro. 2007;21:878–86.

    PubMed  CAS  Google Scholar 

  • Peyrou M, Hanna PE, Cribb AE. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci. 2007;99:346–53.

    Article  PubMed  CAS  Google Scholar 

  • Ramesh G, Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest. 2002;110:835–42.

    PubMed  CAS  Google Scholar 

  • Ramesh G, Zhang B, Uematsu S, Akira S, Reeves WB. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am J Physiol Renal Physiol. 2007;293:F325–32.

    Article  PubMed  CAS  Google Scholar 

  • Ries F, Klastersky J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am J Kidney Dis. 1986;8:368–79.

    PubMed  CAS  Google Scholar 

  • Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 2002;82:131–85.

    PubMed  CAS  Google Scholar 

  • Schaeppi U, Heyman IA, Fleischman RW, Rosenkrantz H, Ilievski V, Phelan R, et al. cis-dichlorodiammineplatinum(II) (NSC-119 875): Preclinical toxicologic evaluation of intravenous injection in dogs, monkeys and mice. Toxicol Appl Pharmacol. 1973;25:230–41.

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer KR, Kubala L, Newman JW, Kim IH, Eiserich JP, Hammock BD. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci USA. 2005;102:9772–7.

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer KR, Inceoglu B, Kubala L, Kim IH, Jinks SL, Eiserich JP, et al. Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci USA. 2006;103:13646–51.

    Article  PubMed  CAS  Google Scholar 

  • Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ. Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem. 2000;275:40504–10.

    Article  PubMed  CAS  Google Scholar 

  • Smith KR, Pinkerton KE, Watanabe T, Pedersen TL, Ma SJ, Hammock BD. Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci USA. 2005;102:2186–91.

    Article  PubMed  CAS  Google Scholar 

  • Thompson KL, Afshari CA, Amin RP, Bertram TA, Car B, Cunningham M, et al. Identification of platform-independent gene expression markers of cisplatin nephrotoxicity. Environ Health Perspect. 2004;112:488–94.

    PubMed  CAS  Google Scholar 

  • Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003;14:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Schulz D, Morisseau C, Hammock BD. High-throughput pharmacokinetic method: Cassette dosing in mice associated with minuscule serial bleedings and LC/MS/MS analysis. Anal Chim Acta. 2006;559:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Winston JA, Safirstein R. Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol. 1985;249:F490–6.

    PubMed  CAS  Google Scholar 

  • Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ, et al. Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci USA. 2006;103:18733–38.

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Kaushal V, Haun RS, Seth R, Shah SV, Kaushal GP. Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ. 2008;15:530–44.

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res. 2000;87:992–8.

    PubMed  CAS  Google Scholar 

  • Zager RA, Johnson AC, Lund S, Randolph-Habecker J. Toll-like receptor (TLR4) shedding and depletion: acute proximal tubular cell responses to hypoxic and toxic injury. Am J Physiol Renal Physiol. 2007;292:F304–12.

    Article  PubMed  CAS  Google Scholar 

  • Zeldin DC, Kobayashi J, Falck JR, Winder BS, Hammock BD, Snapper JR, et al. Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase. J Biol Chem. 1993;268:6402–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Texas A&M University Vice President for Research (ARP) and NIEHS Grants ES02710 and P42 ES04699, NIH/NHLBI grant R01 HL59699-06A1 (BDH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Parrish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrish, A.R., Chen, G., Burghardt, R.C. et al. Attenuation of cisplatin nephrotoxicity by inhibition of soluble epoxide hydrolase. Cell Biol Toxicol 25, 217–225 (2009). https://doi.org/10.1007/s10565-008-9071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9071-0

Keywords

Navigation