Skip to main content

Advertisement

Log in

Conventional protein kinase C isoenzymes undergo dephosphorylation in neutrophil-like HL-60 cells treated by chelerythrine or sanguinarine

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The quaternary benzo[c]phenanthridine alkaloid chelerythrine is widely used as an inhibitor of protein kinase C (PKC). However, in biological systems chelerythrine interacts with an array of proteins. In this study, we examined the effects of chelerythrine and sanguinarine on conventional PKCs (cPKCs) and PKC upstream kinase, phosphoinositide-dependent protein kinase 1 (PDK1), under complete inhibition conditions of PKC-dependent oxidative burst. In neutrophil-like HL-60 cells, sanguinarine and chelerythrine inhibited N-formyl-Met-Leu-Phe, phorbol 12-myristate 13-acetate (PMA)-, and A23187-induced oxidative burst with IC50 values not exceeding 4.6 μmol/L, but the inhibition of PMA-stimulated cPKC activity in intact cells required at least fivefold higher alkaloid concentrations. At concentrations below 10 μmol/L, sanguinarine and chelerythrine prevented phosphorylation of ∼80 kDa protein and sequestered ∼60 kDa phosphoprotein in cytosol. Moreover, neither sanguinarine nor chelerythrine impaired PMA-stimulated translocation of autophosphorylated PKCα/βII isoenzymes, but both alkaloids induced dephosphorylation of the turn motif in PKCα/βII. The dephosphorylation did not occur in unstimulated cells and it was not accompanied by PKC degradation. Furthermore, cell treatment with sanguinarine or chelerythrine resulted in phosphorylation of ∼70 kDa protein by PDK1. We conclude that PKC-dependent cellular events are affected by chelerythrine primarily by multiple protein interactions rather than by inhibition of PKC activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A23187:

Ca2+ ionophore A23187

DAG:

diacylglycerol

DMSO:

dimethyl sulfoxide

fMLP:

N-formyl-Met-Leu-Phe

LDH:

lactate dehydrogenase

MCLA:

2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one hydrochloride

MG132:

Z-Leu-Leu-Leu-al

PDK1:

phosphoinositide-dependent protein kinase 1

PKC:

protein kinase C

PMA:

phorbol 12-myristate 13-acetate

SDS:

sodium dodecyl sulfate

SOD:

superoxide dismutase

References

  • Agarwal S, Reynolds MA, Pou S, Peterson DE, Charon JA, Suzuki JB. The effect of sanguinarine on human peripheral blood neutrophil viability and functions. Oral Microbiol Immunol 1991;6:51–61.

    Article  PubMed  CAS  Google Scholar 

  • Asehnoune K, Strassheim D, Mitra S, Yeol Kim J, Abraham E. Involvement of PKCalpha/beta in TLR4 and TLR2 dependent activation of NF-kappaB. Cell Signal 2005;17:385–94.

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Bernt E. Lactate dehydrogenase: UV-assay with pyruvate and NADH. In: Bergmeyer HU, editor. Methods of enzymatic analysis. New York: Academic Press; 1974. p. 574–9.

    Google Scholar 

  • Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB, et al. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol 2003;170:5302–8.

    PubMed  CAS  Google Scholar 

  • Collins SJ. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 1987;70:1233–44.

    PubMed  CAS  Google Scholar 

  • Cross AR, Segal AW. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems. Biochim Biophys Acta 2004;1657:1–22.

    PubMed  CAS  Google Scholar 

  • Cross AR, Erickson RW, Ellis BA, Curnutte JT. Spontaneous activation of NADPH oxidase in a cell-free system: unexpected multiple effects of magnesium ion concentrations. Biochem J 1999;338:229–33.

    Article  PubMed  CAS  Google Scholar 

  • Dang PM, Fontayne A, Hakim J, El Benna J, Perianin A. Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol 2001;166:1206–13.

    PubMed  CAS  Google Scholar 

  • Decoursey TE, Ligeti E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci 2005;62:2173–93.

    Article  PubMed  CAS  Google Scholar 

  • El-Benna J, Dang PM, Gougerot-Pocidalo MA, Elbim C. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 2005;53:199–206.

    CAS  Google Scholar 

  • Farnell MB, He H, Kogut MH. Differential activation of signal transduction pathways mediating oxidative burst by chicken heterophils in response to stimulation with lipopolysaccharide and lipoteichoic acid. Inflammation 2003;27:225–31.

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz ML, Montesinos C, Ubeda A, Manez S, Paya M, Alcaraz MJ. Effect of benzylisoquinoline alkaloids on oxygen radicals production. Planta Med 1991;57:A49–50.

    Article  Google Scholar 

  • Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 2002;41:7743–50.

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 2002;277:31585–92.

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Chen ZH, Gundimeda U. Modifications of cysteine-rich regions in protein kinase C induced by oxidant tumor promoters and enzyme-specific inhibitors. Methods Enzymol 1995;252:132–46.

    PubMed  CAS  Google Scholar 

  • Herbert JM, Augereau JM, Gleye J, Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 1990;172:993–9.

    Article  PubMed  CAS  Google Scholar 

  • Jones OT, Hancock JT. Assays of plasma membrane NADPH oxidase. Methods Enzymol 1994;233:222–9.

    PubMed  CAS  Google Scholar 

  • Karlsson A, Dahlgren C. Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 2002;4:49–60.

    Article  PubMed  CAS  Google Scholar 

  • Korchak HM, Kilpatrick LE. Roles for beta II-protein kinase C and RACK1 in positive and negative signaling for superoxide anion generation in differentiated HL60 cells. J Biol Chem 2001;276:8910–7.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 1998;8:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Qing WG, Mar W, et al. Angoline and chelerythrine, benzophenanthridine alkaloids that do not inhibit protein kinase C. J Biol Chem 1998;273:19829–33.

    Article  PubMed  CAS  Google Scholar 

  • Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998;332:281–92.

    PubMed  CAS  Google Scholar 

  • Nakano M, Koga S. Luciferin derivative for assay of myeloperoxidase and dopamine metabolism. Methods Enzymol 1994;233:495–501.

    Article  PubMed  CAS  Google Scholar 

  • Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 2003;370:361–71.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC. Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 1997;272:952–60.

    Article  PubMed  CAS  Google Scholar 

  • Perisic O, Wilson MI, Karathanassis D, et al. The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Adv Enzyme Regul 2004;44:279–98.

    PubMed  CAS  Google Scholar 

  • Psotová J, Ducher L, Ulrichová J, Walterová D. Quaternary isoquinoline alkaloids as protein kinase C inhibitors. Chem Listy 1996;90:613–4.

    Google Scholar 

  • Psotová J, Klejdus B, Večeřa R, et al. A liquid chromatographic-mass spectrometric evidence of dihydrosanguinarine as a first metabolite of sanguinarine transformation in rat. J Chromatogr B Analyt Technol Biomed Life Sci 2006;830:165–72.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg UT, Burgess GM. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 1989;10:218–20.

    Article  PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K. The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Life Sci 2003;73:2263–80.

    Article  PubMed  CAS  Google Scholar 

  • Siomboing X, Gressier B, Dine T, et al. Investigation of the inhibitory effects of chelerythrine chloride on the translocation of the protein kinase C betaI, betaII, zeta in human neutrophils. Farmaco 2001;56:859–65.

    Article  PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76–85.

    Article  PubMed  CAS  Google Scholar 

  • Twomey B, Muid RE, Dale MM. The effect of putative protein kinase C inhibitors, K252a and staurosporine, on the human neutrophil respiratory burst activated by both receptor stimulation and post-receptor mechanisms. Br J Pharmacol 1990;100:819–25.

    PubMed  CAS  Google Scholar 

  • Vlčková M, Kubáň V, Vičar J, Šimánek V. Capillary zone electrophoretic studies of interactions of some quaternary isoquinoline alkaloids with DNA constituents and DNA. Electrophoresis 2005;26:1673–9.

    Article  PubMed  CAS  Google Scholar 

  • Vrba J, Hrbáč J, Ulrichová J, Modrianský M. Sanguinarine is a potent inhibitor of oxidative burst in DMSO-differentiated HL-60 cells by a non-redox mechanism. Chem Biol Interact 2004;147:35–47.

    Article  PubMed  CAS  Google Scholar 

  • Walterová D, Ulrichová J, Válka I, et al. Benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine: biological activities and dental care applications. Acta Univ Palacki Olomuc Fac Med 1995;139:7–16.

    PubMed  Google Scholar 

  • Wang BH, Lu ZX, Polya GM. Inhibition of eukaryote protein kinases by isoquinoline and oxazine alkaloids. Planta Med 1997;63:494–8.

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Mandlekar S, Tan TH, Kong AN. Activation of p38 and c-Jun N-terminal kinase pathways and induction of apoptosis by chelerythrine do not require inhibition of protein kinase C. J Biol Chem 2000;275:9612–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jaroslav Vičar for kindly providing the tested alkaloids. This work was supported by grant MSM 6198959216 from the Ministry of Education, Youth and Sports of the Czech Republic and by grant 303/06/P193 from the Grant Agency of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vrba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrba, J., Dvořák, Z., Ulrichová, J. et al. Conventional protein kinase C isoenzymes undergo dephosphorylation in neutrophil-like HL-60 cells treated by chelerythrine or sanguinarine. Cell Biol Toxicol 24, 39–53 (2008). https://doi.org/10.1007/s10565-007-9014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-007-9014-1

Keywords

Navigation