Skip to main content

Advertisement

Log in

The effect of chelerythrine on cell growth, apoptosis, and cell cycle in human normal and cancer cells in comparison with sanguinarine

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

We compared the effects of chelerythrine (CHE) and sanguinarine (SA) on human prostate cancer cell lines (LNCaP and DU-145) and primary culture of human gingival fibroblasts. CHE and SA treatment of cell lines for 24 h resulted in (1) inhibition of cell viability in a dose-dependent manner in all tested cells (as evaluated by MTT test and bromodeoxyuridine incorporation assay); (2) dose-dependent increase in DNA damage in all tested cells (as evaluated by DNA comet assay); (3) changes in apoptosis (assessed by western blot analysis and TUNEL assay); and (4) significant induction of cyclin kinase inhibitors p21Waf1/Cip1 and p27Kip1 in prostate cancer cells (identified by western blot analysis). Our study demonstrates that CHE had significant cytotoxic effect, independent of p53 and androgen status, on human prostate cancer cell lines. Normal gingival fibroblasts and DU-145 cells were more sensitive to the treatment with both alkaloids than were LNCaP cells. CHE and SA may be prospective natural molecules for use in the treatment of prostate cancer owing to their involvement in apoptosis and cell cycle regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AR:

androgen receptor

BrdU:

bromodeoxyuridine

CC:

column chromatography

cdk:

cyclin-dependent kinase

CHE:

chelerythrine

DAPI:

4′,6-diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

dimethyl sulfoxide

FCS:

fetal calf serum

FITC:

fluorescein isothiocyanate

MTT:

3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-κB:

nuclear factor kappa B

PARP:

poly-(ADP-ribose) polymerase

PBS:

phosphate-buffered saline

PCNA:

proliferating-cell nuclear antigen

PSA:

prostate-specific antigen

QBA:

quaternary benzo[c]phenanthridine alkaloids

Rb:

retinoblastoma gene

SA:

sanguinarine

TUNEL:

terminal deoxynucleotide transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling

References

  • Adhami VM, Aziz MH, Reagan-Shaw SR, Nihal M, Mukhtar H, Ahmad N. Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther. 2004;3:933–40.

    PubMed  CAS  Google Scholar 

  • Agarwal S, Reynolds MA, Pou S, Peterson DE, Charon, JA, Suzuki JB. The effect of sanguinarine on human peripheral blood neutrophil viability and functions. Oral Microbiol Immunol. 1991;6:51–1.

    PubMed  CAS  Google Scholar 

  • Ahmad N, Gupta S, Husain MM, Heiskanen KM, Mukhtar H. Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin Cancer Res. 2000;6:1524–8.

    PubMed  CAS  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  • Bruckheimer EM, Gjertsen BT, McDonnell TJ. Implications of cell death regulation in the pathogenesis and treatment of prostate cancer. Semin Oncol. 1999;26:382–98.

    PubMed  CAS  Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res. 1987;47:5875–9.

    PubMed  Google Scholar 

  • Carroll AG, Voeller HJ, Sugars L, Gelmann EP. p53 oncogene mutations in three human prostate cancer cell lines. Prostate. 1993;2:123–34.

    Google Scholar 

  • Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem. 1997;272:30129–34.

    Article  PubMed  CAS  Google Scholar 

  • Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Culig Z, Stober J, Gast A, et al. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect Prev. 1996;20:68–75.

    PubMed  CAS  Google Scholar 

  • Dahiya R, Yoon WH, Boyle B, Schoenberg S, Yen TS, Narayan P. Biochemical, cytogenetic, and morphological characteristics of human primary and metastatic prostate cancer cell lines. Biochem Int. 1992;27:567–77.

    PubMed  CAS  Google Scholar 

  • Ding Z, Tang SC, Weerasinghe P, Yang X, Pater A, Liepins A. The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol. 2002;63:1415–21.

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  PubMed  CAS  Google Scholar 

  • Eley BM. Antibacterial agents in the control of supragingival plaque—a review. Br Dent J. 1999;186:286–96.

    Article  PubMed  CAS  Google Scholar 

  • Godowski KC, Wolff ED, Thompson DM, et al. Whole mouth microbiota effects following subgingival delivery of sanguinarum. J Periodontol. 1995;66:870–7.

    PubMed  CAS  Google Scholar 

  • Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract. 2004;58:1134–41.

    Article  PubMed  CAS  Google Scholar 

  • Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science. 1982;218:474–5.

    PubMed  CAS  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A., Oren, M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    Article  PubMed  CAS  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, et al. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43:1809–18.

    PubMed  CAS  Google Scholar 

  • Kemeny-Beke A, Aradi J, Damjanovich J, et al. Apoptotic response of uveal melanoma cells upon treatment with chelidonine, sanguinarine and chelerythrine. Cancer Lett. 2005; 8;237(1):67–75.

    Article  PubMed  Google Scholar 

  • Klocker H, Culig Z, Hobisch A, Cato AC, Bartsch G. Androgen receptor alterations in prostatic carcinoma. Prostate. 1994;25:266–73.

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Sugiyama C, Morikawa Y, Hayashi M, Sofuni T. A comparison between manual microscopic analysis and computerized image analysis in the single cell gel electrophoresis assay. MMS Commun. 1995;3:10315.

    Google Scholar 

  • Li Y, Yao J, Chang M, Cuendet M, Bolton JL. Altered apoptotic response in MCF 10A cells treated with the equine estrogen metabolite, 4-hydroxyequilenin. Toxicol Lett. 2004;154: 225–33.

    Article  PubMed  CAS  Google Scholar 

  • Macaluso M, Montanari M, Cinti C, Giordano A. Modulation of cell cycle components by epigenetic and genetic events. Semin Oncol. 2005;32:452–7.

    Article  PubMed  CAS  Google Scholar 

  • Miyamae Y, Yamamoto M, Sasaki YF, et al. Evaluation of a tissue homogenization technique that isolates nuclei for the in vivo single cell gel electrophoresis (comet) assay: a collaborative study by five laboratories. Mutat Res. 1998;418:131–40.

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Suzuki M, Saimoto A, Kabasawa T. Structural considerations of NK109, an antitumor benzo[c]phenanthridine alkaloid. J Nat Prod. 1999;62:864–7.

    Article  PubMed  CAS  Google Scholar 

  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–60.

    Article  PubMed  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  PubMed  CAS  Google Scholar 

  • Southon IW, Buckingham J. Dictionary of alkaloids. London: Chapman and Hall; 1989:215,940.

    Google Scholar 

  • Walterova D, Preininger V, Grambal F, Simanek V, Santavy F. Fluorescence spectra and cation-pseudobase equilibria of some benzophenanthridine alkaloids. Heterocycles. 1980;5:597–600.

    Google Scholar 

  • Walterova D, Ulrichova J, Valka I, et al. Benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine: biological activities and dental care aplications. Acta Univ Palacki Olomuc Fac Med 1995;139:7–16.

    PubMed  CAS  Google Scholar 

  • Weerasinghe P, Hallock S, Tang SC, Liepins A. Role of Bcl-2 family proteins and caspase-3 in sanguinarine-induced bimodal cell death. Cell Biol Toxicol. 2001;17:371–81.

    Article  PubMed  CAS  Google Scholar 

  • Wirth MP, Hakenberg OW. Prevention of prostate cancer. Dtsch Med Wochenschr. 2005;130:2002–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Malíková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malíková, J., Zdařilová, A., Hlobilková, A. et al. The effect of chelerythrine on cell growth, apoptosis, and cell cycle in human normal and cancer cells in comparison with sanguinarine. Cell Biol Toxicol 22, 439–453 (2006). https://doi.org/10.1007/s10565-006-0109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0109-x

Keywords

Navigation