Skip to main content
Log in

Molecular Design of Heme Proteins for Future Application

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This review surveys our recent studies on artificial heme oxygenases, which consists of two topics. The first topic is an artificial peroxidase founded on a thermally tolerant protein, which shows high thermal stability in the catalytic reaction. In the second topic, we describe ‘Decoy system’ that has been developed to transform Cytochrome P450BSβ into a versatile oxygenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Kaplan J, DeGrado WF (2004) Proc Natl Acad Sci USA 101:11566

    Article  CAS  Google Scholar 

  2. Robertson DE (1994) Nature 368:425

    Article  CAS  Google Scholar 

  3. Case MA, McLendon GL (2004) Acc Chem Res 37:754

    Article  CAS  Google Scholar 

  4. Cochran FV (2005) J Am Chem Soc 127:1346

    Article  CAS  Google Scholar 

  5. WatanabeY, Hayashi T (2005) Functionalization of myoglobin. In: Karlin KD (ed) Progress in inorganic chemistry, vol 54. John Wiley, NY, p. 449

  6. Ghosh D, Pecoraro VL (2005) Curr Opin Chem Biol 9:97

    Article  CAS  Google Scholar 

  7. Koder RL (2009) Nature 458:305

    Article  CAS  Google Scholar 

  8. Sigman JA, Kwok BC, Lu Y (2000) J Am Chem Soc 122:8192

    Article  CAS  Google Scholar 

  9. Ozaki SI, Roach MP, Matsui T, Watanabe Y (2001) Acc Chem Res 34:818

    Article  CAS  Google Scholar 

  10. Ueno T, Abe S, Yokoi N, Watanabe Y (2007) Coord Chem Rev 251:2717

    Article  CAS  Google Scholar 

  11. Watanabe Y (2002) Curr Opin Chem Biol 6:208

    Article  CAS  Google Scholar 

  12. Watanabe Y, Fujii H (2000) Characterization of high-valent oxo-metalloporphyrins. In: Metal-oxo and metal-peroxo species in catalytic oxidations. Springer, NY, p 61

  13. Watanabe Y, Nakajima H, Ueno T (2007) Acc Chem Res 40:554

    Article  CAS  Google Scholar 

  14. Nakajima H, Ramanathan K, Kawaba N, Watanabe Y (2010) Dalton Trans 39:3105

    Article  CAS  Google Scholar 

  15. Nakajima H, Ichikawa Y, Satake Y, Takatani N, Manna SK, Rajbongshi J, Mazumdar S, Watanabe Y (2008) ChemBioChem 9:2954

    Article  CAS  Google Scholar 

  16. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841

    Article  CAS  Google Scholar 

  17. Ortiz de Montellano PR (1995) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Plenum Press, New York

  18. Li YH, Beisson F (2009) Biochimie 91:685

    Article  CAS  Google Scholar 

  19. Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Biosens Bioelectron 20:2408

    Article  CAS  Google Scholar 

  20. Gillam EMJ (2008) Chem Res Toxicol 21:220

    Article  Google Scholar 

  21. Shoji O, Fujishiro T, Nakajima H, Kim M, Nagano S, Shiro Y, Watanabe Y (2007) Angew Chem Int Edn 46:3656

    Article  CAS  Google Scholar 

  22. Torres E, Hayen H, Niemeyer CM (2007) Biochem Biophys Res Commun 355:286

    Article  CAS  Google Scholar 

  23. Shiro Y, Matsunaga I, Lee DS (2003) J Inorg Biochem 96:228

    Article  Google Scholar 

  24. Lee D-S, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, Adachi S-i, Park S-Y, Shiro Y (2003) J Biol Chem 278:9761

    Article  CAS  Google Scholar 

  25. Lee DS, Yamada A, Matsunaga I, Ichihara K, Adachi S, Park SY, Shiro Y (2002) Acta Crystallogr D-Biol Crystallogr 58:687

    Article  Google Scholar 

  26. Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Lipids 34:841

    Article  CAS  Google Scholar 

  27. Weng ZJ, Hendrickx M, Maesmans G, Tobback P (1991) J Food Sci 56:567

    Article  CAS  Google Scholar 

  28. Ayala M, Verdin J, Vazquez-Duhalt R (2007) Biocatal Biotransform 25:114

    Article  CAS  Google Scholar 

  29. Krieg R, Halbhuber KJ (2003) Cell Mol Biol 49:547

    CAS  Google Scholar 

  30. Veitch NC (2004) Phytochemistry 65:249

    Article  CAS  Google Scholar 

  31. Apitz A, van Pee KH (2001) Arch Microbiol 175:405

    Article  CAS  Google Scholar 

  32. Kengen SWM, Bikker FJ, Hagen WR, de Vos WM, van der Oost J (2001) Extremophiles 5:323

    Article  CAS  Google Scholar 

  33. McEldoon JP, Pokora AR, Dordick JS (1995) Enyme Microb Technol 17:359

    Article  CAS  Google Scholar 

  34. Gudelj M, Fruhwirth GO, Paar A, Lottspeich F, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Extremophiles 5:423

    Article  CAS  Google Scholar 

  35. Morawski B, Quan S, Arnold FH (2001) Biotechnol Bioeng 76:99

    Article  CAS  Google Scholar 

  36. Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH (1999) Nat Biotechnol 17:379

    Article  CAS  Google Scholar 

  37. Than ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T (1997) J Mol Biol 271:629

    Article  CAS  Google Scholar 

  38. Adachi S, Nagano S, Ishimori K, Watanabe Y, Morishima I, Egawa T, Kitagawa T, Makino R (1993) Biochemistry 32:241

    Article  CAS  Google Scholar 

  39. Markwalder HU, Neukom H (1976) Phytochemistry 15:836

    Article  CAS  Google Scholar 

  40. Diederix REM, Fittipaldi M, Worrall JAR, Huber M, Ubbink M, Canters GW (2003) Inorg Chem 42:7249

    Article  CAS  Google Scholar 

  41. Dunford HB (1999) In: Dunford HB (ed) Heme peroxidases. Wiley & Sons, Inc, NY

    Google Scholar 

  42. Chanda A, Ryabov AD, Mondal S, Alexandrova L, Ghosh A, Hangun-Balkir Y, Horwitz CP, Collins TJ (2006) Chem-Eur J 12:9336

    Article  CAS  Google Scholar 

  43. Li QS, Ogawa J, Schmid RD, Shimizu S (2005) Biosci Biotechnol Biochem 69:293

    Article  CAS  Google Scholar 

  44. Joo H, Lin Z, Arnold FH (1999) Nature 399:670

    Article  CAS  Google Scholar 

  45. Cirino PC, Arnold FH (2003) Angew Chem Int Edn 42:3299

    Article  CAS  Google Scholar 

  46. Hrycay EG, Gustafsson J-a, Ingelman-Sundberg M, Ernster L (1975) Biochem Biophys Res Commun 66:209

    Article  CAS  Google Scholar 

  47. Nordblom GD, White RE, Coon MJ (1976) Arch Biochem Biophys 175:524

    Article  CAS  Google Scholar 

  48. Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H (2001) Arch Biochem Biophys 394:45

    Article  CAS  Google Scholar 

  49. DeLano WL (2002) The PyMOL molecular graphics system. On World Wide Web http://www.pymol.org

  50. Kellner DG, Hung S-C, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641

    Article  CAS  Google Scholar 

  51. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615

    Article  CAS  Google Scholar 

  52. Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K (2000) Lipids 35:365

    Article  CAS  Google Scholar 

  53. Sundaramoorthy M, Terner J, Poulos TL (1995) Structure 3:1367

    Article  CAS  Google Scholar 

  54. Sundaramoorthy M, Terner J, Poulos TL (1998) Chem Biol 5:461

    Article  CAS  Google Scholar 

  55. Matsui T, Ozaki S, Liong E, Phillips GN Jr, Watanabe Y (1999) J Biol Chem 274:2838

    Article  CAS  Google Scholar 

  56. Matsui T, Ozaki S, Watanabe Y (1999) J Am Chem Soc 121:9952

    Article  CAS  Google Scholar 

  57. Ozaki S, Matsui T, Roach MP, Watanabe Y (2000) Coord Chem Rev 198:39

    Article  CAS  Google Scholar 

  58. Ozaki S, Matsui T, Watanabe Y (1997) J Am Chem Soc 119:6666

    Article  CAS  Google Scholar 

  59. Chrastil J, Wilson JT (1975) Anal Biochem 63:202

    Article  CAS  Google Scholar 

  60. Goldschmidt S, Wessbecher H (1928) Berichte der deutschen chemischen Gesellschaft (A and B Series) 61:372

    Article  Google Scholar 

  61. Russig F (1900) J Praktische Chemie 62:30

    Article  CAS  Google Scholar 

  62. Kleeberg U, Klinger W (1982) J Pharmacol Sci 8:19

    CAS  Google Scholar 

  63. Burke MD, Thompson S, Weaver RJ, Wolf CR, Mayers RT (1994) Biochem Pharmacol 48:923

    Article  CAS  Google Scholar 

  64. Li AP, Kaminski DL, Rasmussen A (1995) Toxicology 104:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, H., Osami, S. & Watanabe, Y. Molecular Design of Heme Proteins for Future Application. Catal Surv Asia 15, 134–143 (2011). https://doi.org/10.1007/s10563-011-9117-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-011-9117-9

Keywords

Navigation