Skip to main content
Log in

Carbon Dioxide Reforming of Methane over Ni Catalysts Supported on Al2O3 Modified with La2O3, MgO, and CaO

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bradford MCJ, Vannice MA (1999) Catal Rev Sci Eng 41:1

    Article  CAS  Google Scholar 

  2. Wang S, Lu GQ (1996) Energy Fuels 10:896

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR (1993) Stud. Surf Sci Catal 81:25

    Article  Google Scholar 

  4. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225

    Article  CAS  Google Scholar 

  5. Wang HY, Ruckenstein E (2000) Appl Catal A Gen 204:143

    Article  CAS  Google Scholar 

  6. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) Bull Korean Chem Soc 23:793

    CAS  Google Scholar 

  7. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) Catal Lett 81:147

    Article  CAS  Google Scholar 

  8. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) Bull Korean Chem Soc 23:1166

    Article  CAS  Google Scholar 

  9. Potdar HS, Roh H-S, Jun K-W, Ji M, Liu Z-W (2002) Catal Lett 84:95

    Article  CAS  Google Scholar 

  10. Liu Z-W, Roh H-S, Jun K-W (2003) J Ind Eng Chem 9:753

    CAS  Google Scholar 

  11. Roh H-S, Potdar HS, Jun K-W (2004) Catal Today 93–95:39

    Article  CAS  Google Scholar 

  12. Roh H-S, Potdar HS, Jun K-W, Kim J-W, Oh YS (2004) Appl Catal A Gen 276:231

    Article  CAS  Google Scholar 

  13. Roh H-S, Koo K-Y, Jeong JH, Seo YT, Seo DJ, Seo Y-S, Yoon WL, Park SB (2007) Catal Lett 117:85

    Article  CAS  Google Scholar 

  14. Jun K-W, Roh H-S, Chary KVR (2007) Catal Surv Asia 11:97

    Article  CAS  Google Scholar 

  15. Rostrup-Nielsen JR, Hansen JHB (1993) J Catal 144:38

    Article  CAS  Google Scholar 

  16. Xu Z, Li Y, Zhang J, Chang L, Zhou R, Duan Z (2001) Appl Catal A Gen 210:45

    Article  CAS  Google Scholar 

  17. Wang S, Lu GQ (1998) Appl Catal B Environ 19:267

    Article  Google Scholar 

  18. Luo JZ, Yu ZL, Ng CF, Au CT (2000) J Catal 194:198

    Article  CAS  Google Scholar 

  19. Wang S, Lu GQ (1998) Appl Catal B Environ 16:269

    Article  CAS  Google Scholar 

  20. Tomishige K, Yamazaki O, Chen Y, Yokoyama K, Li X, Fujimoto K (1998) Catal Today 45:35

    Article  CAS  Google Scholar 

  21. Wei J-M, Xu B-Q, Li J-L, Cheng Z-X, Zhu Q-M (2000) Appl Catal A Gen 196:L167

    Article  CAS  Google Scholar 

  22. Roh H-S, Dong W-S, Jun K-W, Park S-E (2001) Chem Lett 88

  23. Roh H-S, Jun K-W, Dong W-S, Chang J-S, Park S-E, Joe Y-I (2002) J Mol Catal A 181:137

    Article  CAS  Google Scholar 

  24. Roh H-S, Jun K-W, Dong W-S, Baek S-C, Park S-E (2002) J Ind Eng Chem 8:464

    CAS  Google Scholar 

  25. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol 5, chap 1. Springer, Berlin, pp 1–117

  26. Lemonidou AA, Goula MA, Vasalos IA (1998) Catal Today 46:175

    Article  CAS  Google Scholar 

  27. Miao Q, Xiong G, Sheng S, Cui W, Xu L, Guo X (1997) Appl Catal A Gen 154:17

    Article  CAS  Google Scholar 

  28. Liu Z-W, Roh H-S, Jun K-W (2003) J Ind Eng Chem 9:267

    Google Scholar 

  29. Liu Z-W, Roh H-S, Jun K-W, Potdar HS, Ji M (2003) J Ind Eng Chem 9:576

    CAS  Google Scholar 

  30. Roh H-S, Liu Z-W, Potdar HS, Kim J-W, Jun K-W (2003) J Ind Eng Chem 9:762

    CAS  Google Scholar 

  31. Dong W-S, Roh H-S, Jun K-W, Park S-E, Oh Y-S (2002) Appl Catal A Gen 226:63

    Article  CAS  Google Scholar 

  32. Haack LP, Peters CR, deVries JE, Otto K (1992) Appl Catal A Gen 87:103

    Article  CAS  Google Scholar 

  33. Chen X, Liu Y, Niu G, Yang Z, Bian M, He A (2001) Appl Catal A Gen 205:159

    Article  CAS  Google Scholar 

  34. Subramanian S, Chattha MS, Peters CR (1991) J Mol Catal 69:235

    Article  CAS  Google Scholar 

  35. Haack LP, deVries JE, Otto K, Chattha MS (1992) Appl Catal A Gen 82:199

    Article  CAS  Google Scholar 

  36. Yamamoto T, Tanaka T, Matsuyama T, Funabiki T, Yoshida S (2001) J Synchrotron Radiat 8:634

    Article  CAS  Google Scholar 

  37. Beguin B, Garbowski E, Primet M (1991) Appl Catal 75:119

    Article  CAS  Google Scholar 

  38. Molina R, Poncelet G (1998) J Catal 173:257

    Article  CAS  Google Scholar 

  39. Zielinski J (1982) J Catal 76:157

    Article  CAS  Google Scholar 

  40. Ledford JS, Houalla M, Proctor A, Hercules DM (1989) J Phys Chem 93:6770

    Article  CAS  Google Scholar 

  41. Gomez MF, Cadus LE, Abello MC (1997) Solid State Ionics 98:245

    Article  CAS  Google Scholar 

  42. Fornasari G, Gazzano M, Matteuzzi D, Trifiro F, Vaccari A (1995) Appl Clay Sci 10:69

    Article  CAS  Google Scholar 

  43. Xiancai L, Shuigen L, Yifeng Y, Min W, Fei H (2007) Catal Lett 118:59

    Article  CAS  Google Scholar 

  44. Cui Y, Zhang H, Xu H, Li W (2007) Appl Catal A Gen 331:60

    Article  CAS  Google Scholar 

  45. Kim H, Lee SJ, Song KS (2007) Korean J Chem Eng 24:477

    Article  Google Scholar 

  46. Zhang WD, Liu BS, Zhu C, Tian YL (2005) Appl Catal A Gen 292:138

    Article  CAS  Google Scholar 

  47. Pour AN, Kheirolah YZ, Jozani JK, Mehr JY (2005) React Kinet Catal Lett 86:157

    Article  CAS  Google Scholar 

  48. Li X, Wu M, Lai Z, He F (2005) Appl Catal A Gen 290:81

    Article  CAS  Google Scholar 

  49. Li X, Wu M, Yang Y, He F (2004) J Rare Earths 22:854

    Google Scholar 

  50. Martinez R, Romero E, Guimon C, Bilbao R (2004) Appl Catal A Gen 274:139

    Article  CAS  Google Scholar 

  51. Slagtern A, Olsbye U, Blom R, Dahl IM, Fjellvag H (1997) Appl Catal A Gen 165:379

    Article  Google Scholar 

  52. Roh H-S, Jun K-W, Dong W-S, Park S-E, Joe Y-I (2001) Chem Lett 666

  53. Zhang Z, Verykios XE (1996) Appl Catal A Gen 138:109

    Article  CAS  Google Scholar 

  54. Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Int J Hydrogen Energy 33:2036

    Article  CAS  Google Scholar 

  55. Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Appl Catal A Gen 340:183

    Article  CAS  Google Scholar 

  56. Olafsen A, Daniel C, Schuurman Y, Raberg LB, Olsbye U, Mirodatos C (2006) Catal Today 115:179

    Article  CAS  Google Scholar 

  57. Hou Z, Yashima T (2004) Appl Catal A Gen 261:205

    Article  CAS  Google Scholar 

  58. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K (2004) J Catal 221:43

    Article  CAS  Google Scholar 

  59. Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T (1996) Appl Catal A Gen 144:111

    Article  CAS  Google Scholar 

  60. Cheng Z, Wu Q, Li J, Zhu Q (1996) Catal Today 30:147

    Article  CAS  Google Scholar 

  61. Roh H-S, Jun K-W, Dong W-S, Park S-E, Baek Y-S (2001) Catal Lett 74:31

    Article  CAS  Google Scholar 

  62. Chen P, Hou Z-Y, Zheng X-M (2005) Chinese J Chem 23:847

    Article  CAS  Google Scholar 

  63. Yashima T (2005) React Kinet Catal Lett 84:229

    Article  CAS  Google Scholar 

  64. Hou Z, Yokota O, Tanaka T, Yashima T (2003) Appl Catal A Gen 253:381

    Article  CAS  Google Scholar 

  65. Dias JAC, Assaf JM (2003) Catal Today 85:59

    Article  CAS  Google Scholar 

  66. Hou Z, Yokoto O, Tanaka T, Yashima T (2003) Catal Lett 87:37

    Article  CAS  Google Scholar 

  67. Chang J-S, Park S-E, Roh H-S, Park Y-K (1996) Appl Catal A Gen 145:111

    Article  CAS  Google Scholar 

  68. Chang J-S, Park S-E, Roh H-S, Park Y-K (1998) Bull Korean Chem Soc 19:809

    CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted as a subject (KK-0803-D0) of KRICT research program “Sustainable Chemical Technology” and also supported in part by Yonsei University Research Fund of 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, HS., Jun, KW. Carbon Dioxide Reforming of Methane over Ni Catalysts Supported on Al2O3 Modified with La2O3, MgO, and CaO. Catal Surv Asia 12, 239–252 (2008). https://doi.org/10.1007/s10563-008-9058-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-008-9058-0

Keywords

Navigation