Skip to main content
Log in

Rhenium and Rhenium–Copper Nanoparticles: Evaluation of the Catalytic Activity for the Decomposition of Ammonium Perchlorate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Composites of rhenium (ReNP) and rhenium–copper nanoparticles (ReCuNP) were studied as catalysts for the decomposition of the oxidizer ammonium perchlorate (AP) for composite solid propellants. Both composites were prepared by reducing ammonium perrhenate (NH4ReO4) and copper chloride (CuCl2) in the presence of polyamidoamine (PAMAM) dendrimers. The PAMAM-based nanostructures were characterized by transmission electron microscopy (TEM), high resolution TEM, and X-ray photoelectron spectroscopy. ReNP@PAMAM samples showed rhenium clusters and partially oxidized spherical nanoparticles of approx. 1 nm in diameter, while ReCuNP@PAMAM comprised nanoparticles of 6 nm in average size with different shapes and high-size dispersion. The computational description demonstrated the higher stability of the interaction between copper and PAMAM than perrhenate anion due to the charge transfer from the dendrimer to the cation. The materials were evaluated for the catalytic decomposition of AP by calorimetry. The catalytic performance of ReCuNP@PAMAM was superior to that of ReNP@PAMAM, lowering the decomposition of AP at high temperatures. However, the latter composite increased the energy release drastically due to the exothermic oxidation of rhenium metal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Davenas A (2003) Development of modern solid propellants. J Propul Power 19(6):1108–1128

    Article  CAS  Google Scholar 

  2. Kuo K, Summerfield M (1984) Fundamentals of solid-propellant combustion, vol 90. American Institute of Aeronautics and Astronautics, New York

    Book  Google Scholar 

  3. Chaturvedi S, Dave PN (2019) Solid propellants: AP/HTPB composite propellants. Arab J Chem 12(8):2061–2068

    Article  CAS  Google Scholar 

  4. Davenas A (1993) Chapter 10: composite propellants. In: Davenas A (ed) Solid rocket propulsion technology. Pergamon, Amsterdam, pp 415–475

    Chapter  Google Scholar 

  5. Gao J et al (2011) Study on poly (ferrocenylsilane) and its promotive effect to decomposition of ammonium perchlorate. J Propul Power 27(5):1143–1145

    Article  CAS  Google Scholar 

  6. Yan Q-L et al (2016) Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci 57:75–136

    Article  Google Scholar 

  7. Bekhouche S et al (2023) Thermal decomposition behavior and kinetic study of nitrocellulose in presence of ternary nanothermites with different oxidizers. FirePhysChem 3:208

    Article  Google Scholar 

  8. Hanafi S et al (2022) Thermal decomposition and kinetic modeling of HNTO/AN-based composite solid propellant in the presence of GO-based nanocatalyst. FirePhysChem 2(4):315–322

    Article  Google Scholar 

  9. Hanafi S et al (2021) Optimized energetic HNTO/AN co-crystal and its thermal decomposition kinetics in the presence of energetic coordination nanomaterials based on functionalized graphene oxide and cobalt. RSC Adv 11(56):35287–35299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benhammada A et al (2021) Catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate. Z Anorg Allg Chem 647(4):312–325

    Article  CAS  Google Scholar 

  11. Kechit H et al (2021) The effect of iron decorated MWCNTs and iron-ionic liquid decorated MWCNTs onto thermal decomposition of ammonium perchlorate. Z Anorg Allg Chem 647(16–17):1607–1619

    Article  CAS  Google Scholar 

  12. Patil PR, Krishnamurthy VEN, Joshi SS (2008) Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotechn 33(4):266–270

    Article  CAS  Google Scholar 

  13. Patil PR, Krishnamurthy VEN, Joshi SS (2006) Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos Pyrotechn 31(6):442–446

    Article  CAS  Google Scholar 

  14. Jayaraman K et al (2009) Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion. Combust Flame 156(8):1662–1673

    Article  CAS  Google Scholar 

  15. Chaturvedi S, Dave PN (2012) Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J Exp Nanosci 7(2):205–231

    Article  CAS  Google Scholar 

  16. Dave PN, Chaturvedi S, Sirach R (2023) Investigation of the catalytic effect of nano ferrite CoCuNiFe2O4 on the thermal decomposition behavior of ammonium nitrate. New J Chem 47(22):10679–10686

    Article  CAS  Google Scholar 

  17. Dave PN, Sirach R (2023) Thermal analysis study of ammonium nitrate in the presence of NiCuCr2O4 additive. Mater Lett X 18:100194

    CAS  Google Scholar 

  18. Rao DCK, Yadav N, Joshi PC (2016) Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants. Def Technol 12(4):297–304

    Article  Google Scholar 

  19. Chaturvedi S, Dave PN, Patel NN (2015) Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl Nanosci 5(1):93–98

    Article  CAS  Google Scholar 

  20. Singh G et al (2009) Preparation, characterization and catalytic activity of transition metal oxide nanocrystals. J Sci Conf Proc 1(1):11–17

    Article  CAS  Google Scholar 

  21. Liu L et al (2004) Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech 29(1):34–38

    Article  Google Scholar 

  22. Dave PN, Sirach R (2023) Thermal decomposition study of ammonium nitrate in the presence of nickel-zinc ferrite additive. Catal Commun 177:106639

    Article  CAS  Google Scholar 

  23. Sauter C et al (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 15(4):517–523

    Article  CAS  PubMed  Google Scholar 

  24. Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619

    Article  CAS  PubMed  Google Scholar 

  25. Dave PN, Sirach R (2023) Graphene oxide based nickel–copper–zinc and copper–zinc cobaltite: catalysts for the thermolysis of ammonium perchlorate and nitrotriazolone. Energy Adv 2(5):679–690

    Article  CAS  Google Scholar 

  26. Dave PN, Sirach R (2023) Effects of Barium-Copper-Cobalt oxide composites supported on reduced graphene oxide in the thermolysis of ammonium perchlorate and 3-nitro-1,2,4-triazol-5-one. ChemistrySelect 8(9):e202204797

    Article  CAS  Google Scholar 

  27. Tomalia DA et al (1985) A new class of polymers-starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  28. Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, New Yor

    Book  Google Scholar 

  29. Camarada MB et al (2018) Experimental and computational characterization of the interaction between gold nanoparticles and polyamidoamine dendrimers. Langmuir 34(34):10063–10072

    Article  CAS  PubMed  Google Scholar 

  30. Ríos PL et al (2022) Ferrocene-modified dendrimers as support of copper nanoparticles: evaluation of the catalytic activity for the decomposition of ammonium perchlorate. Mater Today Chem 23:100631

    Article  Google Scholar 

  31. Scott RW, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  PubMed  Google Scholar 

  32. Chalghoum F et al (2022) Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J Therm Anal Calorim 147(20):11507–11534

    Article  CAS  Google Scholar 

  33. Mezroua A et al (2022) Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim Acta 716:179305

    Article  CAS  Google Scholar 

  34. Noddack W (1925) Die Ekamangane. Naturwissenschaften 13:567–574

    Article  CAS  Google Scholar 

  35. Santos GM (2014) A tale of oblivion: Ida Noddack and the universal abundance of matter. Notes Rec 68(4):373–389

    Article  Google Scholar 

  36. Yoshihara HK (2008) Nipponium as a new element (Z=75) separated by the Japanese chemist, Masataka Ogawa: a scientific and science historical re-evaluation. Proc Jpn Acad 84(7):232–245

    Article  CAS  Google Scholar 

  37. Hämäläinen J et al (2018) Rhenium metal and rhenium nitride thin films grown by atomic layer deposition. Angew Chem Int Ed 57(44):14538–14542

    Article  Google Scholar 

  38. Wu X et al (2020) Unveiling the Re effect in Ni-based single crystal superalloys. Nat Commun 11(1):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li H et al (2014) Resources, application and extraction status of rhenium. Precious Met 35(2):77–81

    Google Scholar 

  40. Sanz J et al (2022) Rhenium (Re) [Z = 75]. Elements and mineral resources. Springer, Cham, pp 173–175

    Chapter  Google Scholar 

  41. Ríos PL et al (2019) Novel in situ synthesis of copper nanoparticles supported on reduced graphene oxide and its application as a new catalyst for the decomposition of composite solid propellants. RSC Adv 9(15):8480–8489

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hu Y et al (2019) Catalytic decomposition of ammonium perchlorate on hollow mesoporous CuO microspheres. Vacuum 159:105–111

    Article  CAS  Google Scholar 

  43. Zhang Y et al (2020) Microwave-assisted synthesis of graphitic carbon nitride/CuO nanocomposites and the enhancement of catalytic activities in the thermal decomposition of ammonium perchlorate. Appl Surf Sci 499:143875–143885

    Article  CAS  Google Scholar 

  44. Hosseini SG, Khodadadipoor Z, Mahyari M (2018) CuO nanoparticles supported on three-dimensional nitrogen-doped graphene as a promising catalyst for thermal decomposition of ammonium perchlorate. Appl Organomet Chem 32(1):e3959–e3967

    Article  Google Scholar 

  45. Dave PN, Sirach R (2023) Influence of BaZnCuO3 and BaZnCuO3/rGO on the thermal decomposition of ammonium perchlorate and 3-nitro-3H-1,2,4-triazol-5-one (NTO). Asia-Pac J Chem Eng 18(3):e2894

    Article  CAS  Google Scholar 

  46. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  48. Grimme S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  PubMed  Google Scholar 

  49. Frisch MJ, et al (2016) Gaussian 16 Rev. C.01. Wallingford

  50. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270

    Article  CAS  Google Scholar 

  51. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  52. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735

    Article  CAS  Google Scholar 

  53. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553

    Article  CAS  Google Scholar 

  54. Pande S, Crooks RM (2011) Analysis of poly(amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27(15):9609–9613

    Article  CAS  PubMed  Google Scholar 

  55. Zhang W et al (2018) Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 159:68–81

    Article  CAS  PubMed  Google Scholar 

  56. Long Z et al (2018) Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjug Chem 29(8):2606–2618

    Article  CAS  PubMed  Google Scholar 

  57. Viltres H et al (2020) Preparation of amine- and disulfide-containing PAMAM-based dendrons for the functionalization of hydroxylated surfaces: XPS as structural sensor. ChemistrySelect 5(16):4875–4884

    Article  CAS  Google Scholar 

  58. Zhao Z, Li Y (2020) Developing fluorescent copper nanoclusters: synthesis, properties, and applications. Colloids Surf B 195:111244–111255

    Article  CAS  Google Scholar 

  59. Saravanan G, Imae T (2011) Visual observation and characterization of fluorescent poly (amido amine) dendrimer in film state. J Nanosci Nanotechnol 11(6):4838–4845

    Article  CAS  PubMed  Google Scholar 

  60. Kim M et al (2019) Nanostructured rhenium-carbon composites as hydrogen-evolving catalysts effective over the entire pH range. ACS Appl Nano Mater 2(5):2725–2733

    Article  CAS  Google Scholar 

  61. Sakthikumar K et al (2016) A highly stable rhenium organosol on a DNA scaffold for catalytic and SERS applications. J Mater Chem C 4(26):6309–6320

    Article  CAS  Google Scholar 

  62. Greiner MT et al (2014) The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: an in-situ XPS study. Z Phys Chem 228(4–5):521–541

    Article  CAS  Google Scholar 

  63. Mondal P et al (2013) Enhanced catalytic performance by copper nanoparticle–graphene based composite. RSC Adv 3(16):5615–5623

    Article  CAS  Google Scholar 

  64. Devaraj M et al (2016) Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq 221:930–941

    Article  CAS  Google Scholar 

  65. Ghodselahi T et al (2008) XPS study of the Cu@ Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730–2734

    Article  CAS  Google Scholar 

  66. Pollock N et al (2007) Synthesis and characterization of immobilized PAMAM dendrons. Chem Commun 24:2482–2484

    Article  Google Scholar 

  67. Tarazona-Vasquez F, Balbuena PB (2004) Complexation of the lowest generation poly(amidoamine)-NH2 dendrimers with metal ions, metal atoms, and Cu(II) hydrates: Äâ An ab initio study. J Phys Chem B 108(41):15992–16001

    Article  CAS  Google Scholar 

  68. Tarazona-Vasquez F, Balbuena PB (2004) Ab initio study of the lowest energy conformers and IR spectra of poly (amidoamine)-G0 dendrimers. J Phys Chem B 108:15982–15991

    Article  CAS  Google Scholar 

  69. Camarada MB (2016) DFT investigation of the interaction of gold nanoclusters with poly(amidoamine) PAMAM G0 dendrimer. Chem Phys Lett 654:29–36

    Article  CAS  Google Scholar 

  70. Cross JP et al (2004) Polymetallic lanthanide complexes with PAMAM-naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution. J Am Chem Soc 126(50):16278–16279

    Article  CAS  PubMed  Google Scholar 

  71. Fitzgerald R, Brewster M (2004) Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame 136(3):313–326

    Article  CAS  Google Scholar 

  72. Kumar H et al (2017) The effect of reduced graphene oxide on the catalytic activity of Cu–Cr–O–TiO2 to enhance the thermal decomposition rate of ammonium perchlorate: an efficient fuel oxidizer for solid rocket motors and missiles. RSC Adv 7(58):36594–36604

    Article  CAS  Google Scholar 

  73. Davies J, Jacobs P, Russell-Jones A (1967) Thermal decomposition of ammonium perchlorate. J Chem Soc Faraday Trans 63:1737–1748

    Article  CAS  Google Scholar 

  74. Zhang Y, Evans JR, Yang S (2011) Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J Chem Eng Data 56(2):328–337

    Article  CAS  Google Scholar 

  75. Wagman DD, et al (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. National Standard Reference Data System

  76. Albert CF, Geoffrey W (1980) Advanced inorganic chemistry: a comprehensive text

  77. Howell BA, Fan D (2010) Poly(amidoamine) dendrimer-supported organoplatinum antitumour agents. Proc R Soc A 466(2117):1515–1526

    Article  CAS  Google Scholar 

  78. Shcheglov PA, Drobot DV (2006) Heterogeneous equilibria in the rhenium-oxygen system. Russ J Phys Chem 80(11):1819–1825

    Article  CAS  Google Scholar 

  79. Cimino A et al (1980) Photoelectron spectroscopy (XPS) and thermogravimetry (TG) of pure and supported rhenium oxides 1. Pure rhenium compounds. Z Anorg Allg Chem 460(1):86–98

    Article  CAS  Google Scholar 

  80. Oppermann H (1985) Gesamtdruckmessungen und Gasphasenzusammensetzung über Re2O7, ReO3 und ReO2. Z Anorg Allg Chem 523(4):135–144

    Article  CAS  Google Scholar 

  81. Lv T-T et al (2021) Rapid synthesis of Cu2O hollow spheres at low temperature and their catalytic performance for the decomposition of ammonium perchlorate. CrystEngComm 23(45):7985–7993

    Article  CAS  Google Scholar 

  82. Chandrababu P et al (2020) Decomposition of ammonium perchlorate: exploring catalytic activity of nanocomposites based on nano Cu/Cu2O dispersed on graphitic carbon nitride. Thermochim Acta 691:178720

    Article  CAS  Google Scholar 

  83. Malcolm W, Chase J (1998) NIST-JANAF termochemical tables fourth edition. J Phys Chem Ref Data

  84. Chaturvedi S, Dave PN (2013) A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc 17(2):135–149

    Article  CAS  Google Scholar 

  85. Zhi J, Feng-Qi Z (2002) Study on effects of nanometer metal powder on thermal decomposition of HMX. J Propul Technol 23:258–261

    Google Scholar 

Download references

Acknowledgements

M.B.C. is grateful to Fondecyt for funding this research (Project 1180023). A.M.R.R. thanks Fondecyt (Project 1230426). This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02) and by the high-performance computing system of PIDi-UTEM (SCC-PIDi-UTEM CONICYT-FONDEQUIP-EQM180180). The authors thank Projects Fondequip EQM170087 and EQM150101, the Atomic Center of San Carlos de Bariloche, Argentina, especially Alfredo Tolley, and the reagent support of Molymet, Chile.

Author information

Authors and Affiliations

Authors

Contributions

PP: Formal analysis, Methodology, Investigation; GM: Software, Formal analysis, Investigation; CH-C: Writing, review, and editing; AMRR: Writing, review and editing, supervision; FAA: Writing, review, and editing; MBC: Conceptualization, Methodology, Writing, review and editing, Investigation, Supervision.

Corresponding authors

Correspondence to Andrés M. R. Ramírez or María B. Camarada.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1416 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preuss, P., Méndez, G.Y., Hormazábal-Campos, C. et al. Rhenium and Rhenium–Copper Nanoparticles: Evaluation of the Catalytic Activity for the Decomposition of Ammonium Perchlorate. Catal Lett 154, 1970–1981 (2024). https://doi.org/10.1007/s10562-023-04448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04448-2

Keywords

Navigation