Skip to main content
Log in

Influence of CeO2 and WO3 Addition to Impregnated V2O5/TiO2 Catalysts on the Selective Catalytic Reduction of NOx with NH3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We investigate the effect of cerium and tungsten addition to optimize the deNOx activity of V2O5/TiO2 catalysts over a broad temperature range in the catalytic reduction of NOx with NH3 (NH3-SCR) with and without the presence of water. The catalysts were synthesized following co-impregnation of TiO2 with different loadings and varying content of V2O5, CeO2 and WO3 oxides as promoters. Based on surface and bulk characterization, we show that all catalysts undergo different structural changes depending on the chemical nature of the promoters. X-ray photoelectron spectra indicate a tendency for surface reduction after addition of CeO2, surface oxidation after addition of WO3, and after catalytic NH3-SCR. Promotion of V2O5/TiO2 catalysts with CeO2 and/or WO3 broadens the operation temperature window of the catalytic NH3-SCR reaction under both dry and wet conditions and improves the N2 selectivity at high temperatures. The thermal deactivation resistance of CeO2- and WO3-promoted catalysts improves with increasing amount of WO3. We tentatively relate this to suppression of the sintering of the active VOx component and increasing the amount of CeVO4. The latter, as a consequence of Ce-V interaction, detrimentally changes the surface composition of the catalysts and hides active V in the bulk structure inaccessible for reaction. Water slightly decreases the overall catalytic activity of SCR at low temperatures, while preventing the formation of N2O at elevated temperatures. Addition of CeO2 leads to a slight decrease in overall reducibility of the catalysts, while W causes an enhancement in quantitative H2 uptake. On the contrary, the sole addition of CeO2 leads to an enhancement of ammonia adsorption and the appearance of new acidic surface sites, which beneficially combine the reduced surface of the catalysts with an enhanced deNOx activity at low temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Forzatti P (2001) Appl Catal A 222:221–236

    Article  CAS  Google Scholar 

  2. Liu Z, Ihl Woo S (2006) Catal Rev 48:43–89

    Article  CAS  Google Scholar 

  3. Organization WH (2003) Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide: report on a WHO working group, Bonn, Germany 13–15 January 2003. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  4. Youn S, Jeong S, Kim DH (2014) Catal Today 232:185–191

    Article  CAS  Google Scholar 

  5. Tarjomannejad A, Niaei A, Farzi A et al (2016) Catal Lett 146:1544–1551

    Article  CAS  Google Scholar 

  6. Lietti L, Alemany J, Forzatti P et al (1996) Catal Today 29:143–148

    Article  CAS  Google Scholar 

  7. Lietti L, Nova I, Forzatti P (2000) Top Catal 11:111–122

    Article  Google Scholar 

  8. Yang W, Liu F, Xie L et al (2016) Ind Eng Chem Res 55:2677–2685

    Article  CAS  Google Scholar 

  9. Zhao X, Yan Y, Mao L et al (2018) RSC Adv 8:31081–31093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Xiong S, Xiao X, Liao Y et al (2015) Ind Eng Chem Res 54:11011–11023

    Article  CAS  Google Scholar 

  11. Han L, Cai S, Gao M et al (2019) Chem Rev 119:10916–10976

    Article  CAS  PubMed  Google Scholar 

  12. Fu M, Li C, Lu P et al (2014) Catal Sci Technol 4:14–25

    Article  CAS  Google Scholar 

  13. Koebel M, Elsener M, Kleemann M (2000) Catal Today 59:335–345

    Article  CAS  Google Scholar 

  14. Wu G, Li J, Fang Z et al (2015) Catal Commun 64:75–79

    Article  Google Scholar 

  15. Marberger A, Elsener M, Ferri D et al (2015) ACS Catal 5:4180–4188

    Article  CAS  Google Scholar 

  16. Casanova M, Llorca J, Sagar A et al (2015) Catal Today 241:159–168

    Article  CAS  Google Scholar 

  17. Casanova M, Schermanz K, Llorca J et al (2012) Catal Today 184:227–236

    Article  CAS  Google Scholar 

  18. Zhao X, Huang L, Li H et al (2015) Chin J Catal 36:1886–1899

    Article  CAS  Google Scholar 

  19. Zhao X, Huang L, Namuangruk S et al (2016) Catal Sci Technol 6:5543–5553

    Article  CAS  Google Scholar 

  20. Shan W, Liu F, He H et al (2012) Appl Catal, B 115:100–106

    Article  Google Scholar 

  21. Liu Z, Zhang S, Li J et al (2014) Appl Catal B 158:11–19

    Article  Google Scholar 

  22. Gu T, Liu Y, Weng X et al (2010) Catal Commun 12:310–313

    Article  CAS  Google Scholar 

  23. Reddy BM, Khan A, Yamada Y et al (2002) J Phys Chem B 106:10964–10972

    Article  CAS  Google Scholar 

  24. Gillot S, Tricot G, Vezin H et al (2018) Appl Catal B 234:318–328

    Article  CAS  Google Scholar 

  25. Gillot S, Tricot G, Vezin H et al (2017) Appl Catal B 218:338–348

    Article  CAS  Google Scholar 

  26. Chen L, Li J, Ge M (2009) J Phys Chem C 113:21177–21184

    Article  CAS  Google Scholar 

  27. Liang Q, Li J, Yue T (2021) Environ Technol Innov 21:101209

    Article  CAS  Google Scholar 

  28. Soleimanzadeh H, Niaei A, Salari D et al (2019) J Environ Manage 238:360–367

    Article  CAS  PubMed  Google Scholar 

  29. Watschinger M, Ploner K, Winkler D et al (2021) Rev Sci Instrum 92:024105

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadi A, Farzi A, Thurner C et al (2022) Appl Catal, B 307:121160

    Article  CAS  Google Scholar 

  31. Dunn JP, Stenger HG Jr, Wachs IE (1999) Catal Today 51:301–318

    Article  CAS  Google Scholar 

  32. Bourikas K, Fountzoula C, Kordulis C (2004) Appl Catal B 52:145–153

    Article  CAS  Google Scholar 

  33. Martınez-Huerta M, Coronado J, Fernández-Garcıa M et al (2004) J Catal 225:240–248

    Article  Google Scholar 

  34. Huang Y, Tong Z-Q, Bing W et al (2008) J Fuel Chem Technol 36:616–620

    Article  CAS  Google Scholar 

  35. Peng Y, Wang C, Li J (2014) Appl Catal B 144:538–546

    Article  CAS  Google Scholar 

  36. Vuurman MA, Wachs IE, Hirt AM (1991) J Phys Chem 95:9928–9931

    Article  CAS  Google Scholar 

  37. Horn M, Schwerdtfeger C, Meagher E (1972) Z Kristallogr Krist 136:273–281

    Article  CAS  Google Scholar 

  38. Baur WH, Khan AA (1971) Acta Crystallogr B Struct Cryst Cryst Chem 27:2133–2139

    Article  CAS  Google Scholar 

  39. Itoh T, Mori M, Inukai M et al (2015) J Phys Chem C 119:8447–8458

    Article  CAS  Google Scholar 

  40. Mahapatra S, Madras G, Guru Row T (2007) Ind Eng Chem Res 46:1013–1017

    Article  CAS  Google Scholar 

  41. Woodward P, Sleight A, Vogt T (1995) J Phys Chem Solids 56:1305–1315

    Article  CAS  Google Scholar 

  42. Wachs IE, Roberts CA (2010) Chem Soc Rev 39:5002–5017

    Article  CAS  PubMed  Google Scholar 

  43. Reiche M, Buergi T, Baiker A et al (2000) Appl Catal A 198:155–169

    Article  CAS  Google Scholar 

  44. Ross-Medgaarden EI, Wachs IE (2007) J Phys Chem C 111:15089–15099

    Article  CAS  Google Scholar 

  45. Banares M, Wachs I (2002) J Raman Spectrosc 33:359–380

    Article  CAS  Google Scholar 

  46. Wang C, Yang S, Chang H et al (2013) Chem Eng J 225:520–527

    Article  CAS  Google Scholar 

  47. Peng Y, Li K, Li J (2013) Appl Catal B 140:483–492

    Article  Google Scholar 

  48. Li P, Xin Y, Li Q et al (2012) Environ Sci Technol 46:9600–9605

    Article  CAS  PubMed  Google Scholar 

  49. Neri G, Pistone A, Milone C et al (2002) Appl Catal B 38:321–329

    Article  CAS  Google Scholar 

  50. Choi E-Y, Nam I-S, Kim YG (1996) J Catal 161:597–604

    Article  CAS  Google Scholar 

  51. Biesinger MC, Payne BP, Grosvenor AP et al (2011) Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  52. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, et al (2012) NIST standard reference database

  53. Lee KJ, Kumar PA, Maqbool MS et al (2013) Appl Catal B 142:705–717

    Article  Google Scholar 

  54. Xiaodong W, Zhichun S, Guo L et al (2011) J Rare Earths 29:64–68

    Article  Google Scholar 

  55. Xu HY, Xu KW, Ma F et al (2018) RSC Adv 8:10064–10071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kovács G, Baia L, Vulpoi A et al (2014) Appl Catal B 147:508–517

    Article  Google Scholar 

  57. Boningari T, Koirala R, Smirniotis PG (2013) Appl Catal B 140:289–298

    Article  Google Scholar 

  58. Lietti L, Ramis G, Berti F et al (1998) Catal Today 42:101–116

    Article  CAS  Google Scholar 

  59. Topsoe N, Topsoe H, Dumesic J (1995) J Catal 151:226–240

    Article  CAS  Google Scholar 

  60. Zhu M, Lai J-K, Tumuluri U et al (2017) J Am Chem Soc 139:15624–15627

    Article  CAS  PubMed  Google Scholar 

  61. Dong G-J, Yuan Z, Zhang Y-F (2014) J Fuel Chem Technol 42:1093–1101

    Article  CAS  Google Scholar 

  62. Grünbacher M, Tarjomannejad A, Nezhad PDK et al (2019) J Catal 379:18–32

    Article  Google Scholar 

  63. Kwon DW, Lee S, Kim J et al (2021) Catal Today 359:112–123

    Article  CAS  Google Scholar 

  64. Sun C, Dong L, Yu W et al (2011) J Mol Catal A 346:29–38

    Article  CAS  Google Scholar 

  65. Martín-Martín J, Gallastegi-Villa M, González-Marcos M et al (2021) Chem Eng J 417:129013

    Article  Google Scholar 

  66. Sullivan JA, Keane O (2005) Appl Catal B 61:244–252

    Article  CAS  Google Scholar 

  67. ToPsøE N-Y, Slabiak T, Clausen BS, et al. (1992) J Catal 134.

  68. Turco M, Lisi L, Pirone R et al (1994) Appl Catal, B 3:133–149

    Article  CAS  Google Scholar 

  69. Inomata Y, Kubota H, Hata S et al (2021) Nat Commun 12:1–11

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the bilateral IMPULSE program, financed by funds of the OeAD and of the Ministry of Science, Research and Technology of the Islamic Republic of Iran and the special research platform “Materials and Nanoscience” at the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Farzi or Aligholi Niaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1434 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Praty, C., Farzi, A. et al. Influence of CeO2 and WO3 Addition to Impregnated V2O5/TiO2 Catalysts on the Selective Catalytic Reduction of NOx with NH3. Catal Lett 153, 2176–2195 (2023). https://doi.org/10.1007/s10562-022-04108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04108-x

Keywords

Navigation