Skip to main content
Log in

Efficient Catalytic Fixation Nitrogen Activity Under Visible Light by Molybdenum Doped Mesoporous TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient photocatalyst capable of forming oxygen defects on the surface of mesoporous TiO2 was obtained via doping molybdenum ions which can obviously broaden the absorption range of TiO2 under visible light and reduce the recombination rate of photogenerated electron–hole pairs. The surface oxygen defects (Vo) introduced by metal molybdenum doping will adsorb and activate target molecules on the semiconductor surface. The effect of Vo content, modulated by Mo ions doping, on the photocatalytic NH3 production rates of the as-obtained samples was investigated. The optimal photocatalytic NH3 generation rate of Mo-doped TiO2 could reach 183.02 μmol·g−1·h−1 under visible light. PL and photoelectrochemical tests results demonstrated that Mo dopants could promote photogenerated carrier’s separation and restrain the recombination of carriers. Furthermore, the photocatalysts also exhibited good stability in the recycling experiments for 5 runs. The enhanced photocatalytic activity is owing to the Vo defect states, created by the Mo ion-doped, which benefits to the N2 adsorption and reduction at the Ti4+ activation center during the nitrogen fixation process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T (2017) J Am Chem Soc 139:10929–10936

    Article  PubMed  CAS  Google Scholar 

  2. Xiao CL, Hu H, Zhang XY, MacFarlane DR (2017) ACS Sustain Chem Eng 5:10858–10863

    Article  CAS  Google Scholar 

  3. Medford AJ, Hatzell MC (2017) ACS Catal 7:2624–2643

    Article  CAS  Google Scholar 

  4. Wu SQ, Tan XJ, Liu KD, Lei JY, Wang LZ, Zhang JL (2019) Catal Today 335:214–220

    Article  CAS  Google Scholar 

  5. Zhang Y, Di J, Ding PH, Zhao JZ, Gu KZ, Yin XLS, Xia JX, Li HM (2019) J Colloid Interface Sci 553:530–539

    Article  PubMed  CAS  Google Scholar 

  6. Li CC, Wang T, Zhao ZJ, Yang WM, Li JF, Li A, Yang ZL, Ozin GA, Gong JL (2018) Angew Chem Int Ed 57:5278–5282

    Article  CAS  Google Scholar 

  7. Zhang N, Jalil A, Wu DX, Chen SM, Liu YF, Gao C, Ye W, Qi ZM, Ju HX, Wang CM (2018) J Am Chem Soc 140:9434–9443

    Article  PubMed  CAS  Google Scholar 

  8. Zhao YF, Zhao YX, Zheng LR, Cao XZ, Teng F, Wu LZ, Tung CH, O’Hare D, Zhang TR (2017) Adv Mater 29:1703828

    Article  Google Scholar 

  9. Hu XL, Zhang WJ, Yong YW, Xu Y, Wang XH, Yao XX (2020) Appl Surf Sci 510:145413

    Article  CAS  Google Scholar 

  10. Chen XZ, Li N, Kong ZZ, Ong WJ, Zhao XJ (2018) Mater Horiz 5:9–27

    Article  CAS  Google Scholar 

  11. Dong GH, Ho WK, Wang CY (2015) J Mater Chem 3:23435–23441

    Article  CAS  Google Scholar 

  12. Janet CM, Navaladian S, Viswanathan B, Varadarajan TK, Viswanath RP (2010) J Phys Chem C 114:2622–2632

    Article  CAS  Google Scholar 

  13. Oshikiri T, Ueno K, Misawa H (2014) Angew Chem Int Ed 53:9802–9805

    Article  CAS  Google Scholar 

  14. Olga R, Anna E, Gerhard F, Strunk PH (2001) Angew Chem Int Ed 40:3993–3995

    Article  Google Scholar 

  15. Guan RQ, Li JX, Zhang JK (2019) ACS Omega 4(24):20742–20747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li JX, Guan RQ, Zhang JK (2020) J ACS Omega 5(1):570–577

    Article  CAS  Google Scholar 

  17. Sun SM, Li XM, Wang WZ, Zhang L, Sun X (2017) Appl Catal B 200:323–329

    Article  CAS  Google Scholar 

  18. Li JX, Wang DD, Guan RQ, Zhang YJ (2020) ACS Sustain Chem Eng 8:18258–18265

    Article  CAS  Google Scholar 

  19. Guan RQ, Wang DD, Zhang YJ (2019) Appl Catal B 430:80–89

    Google Scholar 

  20. Sun M, Liu X, Zhao G (2019) J Power Sources 430:80–89

    Article  CAS  Google Scholar 

  21. Zhao G, Sun M, Liu X (2019) Electrochim Acta 304:334–341

    Article  CAS  Google Scholar 

  22. Ye LQ, Han CQ, Ma ZY, Leng YM, Li J, Ji XX, Bi DQ, Xie HQ, Huang ZX (2017) Chem Eng J 307:311–318

    Article  CAS  Google Scholar 

  23. Guan RQ, Zhai HJ, Li JX (2020) Appl Surf Sci 507:144772

    Article  CAS  Google Scholar 

  24. Pincella F, Isozaki K, Miki K (2014) Light Sci Appl 3:e133

    Article  CAS  Google Scholar 

  25. Ma XC, Dai Y, Yu L (2016) Light Sci Appl 5:e16017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hossain SM, Park H, Kang HJ, Kim JB, Li TJ, Rhee I, Jun YS, Shon HK (2020) Catalysts 10:4

    Google Scholar 

  27. She HD, Sun YD, Li SP, Huang JW, Wang L, Zhu GQ, Wang QZ (2019) Appl Catal B 245:439–447

    Article  CAS  Google Scholar 

  28. Chatzitakis A, Sartori S (2019) Chem Phys Chem 20:1272–1281

    Article  PubMed  CAS  Google Scholar 

  29. Patil SB, Basavarajappa PS, Ganganagappa N, Jyothi MS, Raghu AV, Reddy KR (2019) Int J Hydrogen Energy 44:13022–13039

    Article  CAS  Google Scholar 

  30. Yang S, Yao JC, Quan YN, Hu MY, Su R, Gao M, Han DL, Yang JH (2020) Light Sci Appl 14:2047–7538

    Google Scholar 

  31. Yang B, Ma ZY, Li Q, Liu XH, Liu ZQ, Yang WD, Guo XH (2020) J Chem 44:1090–1096

    CAS  Google Scholar 

  32. Schrauzer GN, Guth TD (1977) J Am Chem Soc 99:7189–7193

    Article  CAS  Google Scholar 

  33. Endoh E, Bard AJ (1987) New J Chem 11:217–219

    CAS  Google Scholar 

  34. Rusina O, Macyk W, Kisch H (2005) J Phys Chem B 109:10858–10862

    Article  PubMed  CAS  Google Scholar 

  35. Jaffari GH, Ali W, Ain QU, Gul M, Hassan QU, Ali A, Wasiq MF, Zhou JP (2019) J Alloys Compd 773:1154–1164

    Article  CAS  Google Scholar 

  36. Mohamed NM, Bashiri R, Chong FK, Sufian S, Kakooei S (2015) Inter Int J Hydrogen Energy 40:14031–14038

    Article  CAS  Google Scholar 

  37. Qin YY, Li H, Lu J, Meng FY, Ma CC, Yan YS, Meng MJ (2020) Chem Eng J 384:123275

    Article  CAS  Google Scholar 

  38. Sun P, Lu QP, Zhang J, Xiao T, Liu WX, Ma J, Yin S, Cao WB (2020) Chem Eng J 397:125418

    Article  Google Scholar 

  39. Khan H, Jiang ZR, Berk D (2018) Sol Energy 162:420–430

    Article  CAS  Google Scholar 

  40. Bhattacharyya K, Majeed J, Dey KK, Ayyub P, Tyagi AK, Bharadwaj SR (2014) J Phys Chem C 118:15946–15962

    Article  CAS  Google Scholar 

  41. Aviles-Garcia O, Espino-Valencia J, Romero-Romero R, Rico-Cerda JL, Arroyo-Albiter M, Solis-Casados DA (2018) Catalysts 8:631

    Article  Google Scholar 

  42. Zhang TT, Yu B, Wang DA, Zhou F (2015) J Power Sources 281:411–416

    Article  CAS  Google Scholar 

  43. Pham TT, Kang SG, Shin EW (2017) Appl Surf Sci 411:18–26

    Article  CAS  Google Scholar 

  44. Luo SY, Yan BX, Shen J (2012) Thin Solid Films 522:361–365

    Article  CAS  Google Scholar 

  45. Shahi DM, Hassanzadeh-Tabrizi SA, Saffar-Teluri A (2018) Int J Appl Ceram Technol 15:479–488

    Article  Google Scholar 

  46. Shi R, Zhao YX, Waterhouse G, Zhang S, Zhang TR (2019) ACS Catal 9:9739–9750

    Article  CAS  Google Scholar 

  47. Shen YF, Xiong TY, Du H, Jin HZ, Shang JK (2009) J Sol-Gel Sci Technol 3:98–102

    Article  Google Scholar 

  48. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) JACS 134(8):3659–3662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61308095, 21801092 and 21878119), Science and Technology Research Project of Henan Province (Grant No. 202102210055), General project of Chinese postdoctoral program (Grant No. 2020M672263) and the Key Research Programs in Universities of Henan Province (Grant No. 20A150031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongju Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, J., Zhai, H. et al. Efficient Catalytic Fixation Nitrogen Activity Under Visible Light by Molybdenum Doped Mesoporous TiO2. Catal Lett 152, 116–123 (2022). https://doi.org/10.1007/s10562-021-03625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03625-5

Keywords

Navigation