Skip to main content
Log in

Photocatalytic Selective Reduction by TiO2 of 5-Nitrosalicylic Acid Ethyl Ester: A Mild Route to Mesalazine

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photoexcited TiO2 dispersed in a de-aerated acetonitrile/2-propanol (CH3CN/2-PrOH) reaction mixture catalyzes the quick and selective reduction of 5-nitrosalicylic acid methyl ester to the corresponding aniline, an immediate precursor of the drug mesalazine. The transformation is selective also when the starting concentration of nitro compound is increased by orders of magnitude and occurs at room temperature and atmospheric pressure. The photocatalyst can be reused. The photocatalytic reaction can be carried out also under aerated conditions without any loss in selectivity and efficiency. All these factors point out the feasibility of this important synthesis under mild conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu H, Liu J, Xing C, Tan M, Gao F (2011) Asian J Chem 23:3819–3823

    CAS  Google Scholar 

  2. Lu G, Li J, Zhu D, Jiang Q, Cai L, Xie Y, Gan L, (2013) US Patent, #0281730A1

  3. Breviglieri G, Giacomo B, Contrini S, Assanelli C, Campana E, Panunzio M (2001) Molecules 6:M260–M261

    Article  CAS  Google Scholar 

  4. Sanchez-Cano G (2004) US Patent, #6,808,616B2

  5. Sjostrand U (1988) US Patent, #4,788,331

  6. Palmisano G, Garcia-Lopez E, Marcì G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Chem Commun 46:7074–7089

    Article  CAS  Google Scholar 

  7. Lang X, Chen X, Zhao J (2014) Chem Soc Rev 43:473–489

    Article  CAS  Google Scholar 

  8. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Chem Rev 117:1445–1514

    Article  CAS  Google Scholar 

  9. Ferry JL, Glaze WH (1998) Langmuir 14:3551–3555

    Article  CAS  Google Scholar 

  10. Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T (2012) ACS Catal 2:2475–2481

    Article  CAS  Google Scholar 

  11. Shiraishi Y, Hirakawa H, Togawa Y, Sugano Y, Ichikawa S, Hirai T (2013) ACS Catal. 3:2318–2326

    Article  CAS  Google Scholar 

  12. Molinari A, Maldotti A, Amadelli R (2014) Chem Eur J 20:7759–7765

    Article  CAS  Google Scholar 

  13. Imamura K, Yoshikawa T, Hashimoto K, Kominami H (2013) Appl Catal B: Environ 134–135:193–197

    Article  Google Scholar 

  14. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Chem Commun 49:2551–2553

    Article  CAS  Google Scholar 

  15. Hakki A, Dillert R, Bahnemann DW (2013) Phys Chem Chem Phys 15:2992–3002

    Article  CAS  Google Scholar 

  16. Imamura K, Iwasaki S, Maeda T, Hashimoto K, Ohtani B, Kominami H (2011) Phys Chem Chem Phys 13:5114–5119

    Article  CAS  Google Scholar 

  17. Imamura K, Hashimoto K, Kominami H (2012) Chem Commun 48:4356–4358

    Article  CAS  Google Scholar 

  18. Imamura K, Nakanishi K, Hashimoto K, Kominami H (2014) Tetrahedron 70:6134–6139

    Article  CAS  Google Scholar 

  19. Molinari A, Maldotti A, Amadelli R (2015) J Electroanal Chem 755:143–150

    Article  CAS  Google Scholar 

  20. Molinari A, Maldotti A, Amadelli R (2017) Catal Today 281:71–77

    Article  CAS  Google Scholar 

  21. Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  22. Amadelli R, Maldotti A, Samiolo L (2009) Catal Today 144:149–153

    Article  CAS  Google Scholar 

  23. Boronat M, Concepcion P, Corma A, Gonzales S, Illas F, Serna P (2007) J Am Chem Soc 129:16230–16237

    Article  CAS  Google Scholar 

  24. Vasudevan D, Wendt H (1995) J Electroanal Chem 192:69–74

    Article  Google Scholar 

  25. da Silva AF, da Silva Filho AJ, Vasconcellos MLAA, de Santana OL (2018) Molecules 23:2129–2141

    Article  Google Scholar 

  26. Henderson MA (2011) Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  27. Pegis ML, Roberts JAS, Wasylenko DJ, Mader EA, Appel AM, Mayer JM (2015) Inorg Chem 54:11883–11888

    Article  CAS  Google Scholar 

  28. Ishida T, Masatake H (2017) In: Sels B, Van de Voorde M (eds) Nanotechnology in catalysis. Wiley, Weinheim

Download references

Acknowledgements

A special acknowledgment goes to Dr. Rossano Amadelli for his valuable contribution to the scientific discussion and development of the research.

Funding

We thank University of Ferrara (FAR 2017–2018) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Molinari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinari, A., Mazzanti, M. & Fogagnolo, M. Photocatalytic Selective Reduction by TiO2 of 5-Nitrosalicylic Acid Ethyl Ester: A Mild Route to Mesalazine. Catal Lett 150, 1072–1080 (2020). https://doi.org/10.1007/s10562-019-02993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02993-3

Keywords

Navigation