Skip to main content
Log in

Zinc and Nitrogen-Doped Carbon In-Situ Wrapped ZnO Nanoparticles as a High-Activity Catalyst for Acetylene Acetoxylation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Acetylene chemical process, especially catalyzing acetylene acetoxylation for the synthesis of vinyl acetate (VAc), has attracted wide attention in coal-rich countries. Although great efforts have been made to prepare different catalysts to improve the VAc synthesis via acetylene acetoxylation, the acetic acid (HAc) conversion cannot achieve a satisfactory level, much lower than 60%. Herein, ZnO nanoparticles in situ wrapped on zinc-nitrogen-carbon materials (ZnO@ Zn–N–C) have been successfully synthesized. Due to the simultaneous presence of nitrogen and carbon in chitosan, the obtained carbon material achieved in situ nitrogen doping during the high-temperature treatment. Furthermore, the as-obtained ZnO@Zn–N–C exhibits high specific surface area of 1430.1 m2/g and pore volume of 0.92 cm3/g, because Zn composites have the ability to etch carbon to form pores. In particular, ZnO@Zn–N–C displays an amazing catalytic activity for acetylene acetoxylation to synthesize VAc with the HAc conversion high up to 88.8%, which is much higher than those reported in other papers before.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Renneke R, Mcintosh SR, Arunajatesan V, Cruz M, Chen B, Tacke T, Lansink-Rotgerink H, Geisselmann A, Mayer R, Hausmann R (2006) Top Catal 38:279

    Article  CAS  Google Scholar 

  2. Calaza F (2014) J Catal 312:37

    Article  CAS  Google Scholar 

  3. Kumar D, Chen MS, Goodman DW (2007) Catal Today 123:77

    Article  CAS  Google Scholar 

  4. Gao F, Wang Y, Calaza F, Stacchiola D, Tysoe WT (2008) J Mol Catal A 281:14

    Article  CAS  Google Scholar 

  5. Xu H, Yu T, Li M (2015) J Chem 2015:1

    CAS  Google Scholar 

  6. Pohl MM, Radnik J, Schneider M, Bentrup U, Linke D, Brückner A, Ferguson E (2009) J Catal 262:314

    Article  CAS  Google Scholar 

  7. Harold S (2014) Chem Rev 114:1743

    Article  Google Scholar 

  8. Hu J, Yang Q, Yang L, Zhang Z, Su B, Bao Z, Ren Q, Xing H, Dai S (2015) ACS Catal 5:6724

    Article  CAS  Google Scholar 

  9. Kawaguchi T, Wakasugi T (2010) J Chem Technol Biotechnol 42:113

    Article  Google Scholar 

  10. Zhang M, Wu X, Huang X, Yang B, Yu Y (2017) Comput Theor Chem 1115:253

    Article  CAS  Google Scholar 

  11. Hou CY, Feng LR, Qiu FL (2009) Chin Chem Lett 20:865

    Article  CAS  Google Scholar 

  12. Yan FW, Guo CY, Yan F, Li FB, Qian QL, Yuan GQ (2010) Russ J Phys Chem A 84:796

    Article  CAS  Google Scholar 

  13. Hoang Bong, Oleg Naumovich, Temkin Hoang, Binh Dorina, Ivanova Yamandiy (2011) J Chem Chem Eng 5:473

    Google Scholar 

  14. Bong HK, Binh HH, Kurlyandskaya II, Nyrkova AN, Yamandii DI, Temkin ON (2013) Russ J Appl Chem 86:1691

    Article  CAS  Google Scholar 

  15. Wu X, He P, Wang X, Dai B (2017) Chem Eng J 309:172

    Article  CAS  Google Scholar 

  16. He P, Wu X, Huang L, Zhu M, Wang X, Dai B (2018) Catal Commun 112:5

    Article  CAS  Google Scholar 

  17. He P, Huang L, Wu X, Xu Z, Zhu M, Wang X, Dai B (2018) Catalysts 8:239

    Article  Google Scholar 

  18. Liu M, Guo X, Hu L, Yuan H, Wang G, Dai B, Zhang L, Yu F (2019) ChemNanoMat 5:187

    CAS  Google Scholar 

  19. Wang L, Liu M, Wang G, Dai B, Yu F, Zhang J (2019) J Alloy Compd 776:43

    Article  CAS  Google Scholar 

  20. Huang J, Liang Y, Hu H, Liu S, Cai Y, Dong H, Zheng M, Xiao Y, Liu Y (2017) J Mater Chem A 5:24775

    Article  CAS  Google Scholar 

  21. Qu J, Hu Q, Shen K, Zhang K, Li Y, Li H, Zhang Q, Wang J, Quan W (2011) Carbohydr Res 346:822

    Article  CAS  Google Scholar 

  22. Hu L, Yu F, Wang F, Yang S, Peng B, Chen L, Wang G, Hou J, Dai B, Tian Z (2019) Chin Chem Lett. https://doi.org/10.1016/j.cclet.2019.06.041

    Article  Google Scholar 

  23. Hu L, Wei Z, Yu F, Yuan H, Liu M, Wang G, Peng B, Dai B, Ma J (2019) J Energy Chem 39:152

    Article  Google Scholar 

  24. Seo DH, Han ZJ, Kumar S, Ostrikov K (2013) Adv Energy Mater 3:1250

    Article  Google Scholar 

  25. Zhang J, Zhou H, Zhu J, Hu P, Hang C, Yang J, Peng T, Mu S, Huang Y (2017) ACS Appl Mater Interfaces 9:24545

    Article  CAS  Google Scholar 

  26. Song P, Luo M, Liu X, Xing W, Xu W, Jiang Z, Gu L (2017) Adv Funct Mater 27:1700802

    Article  Google Scholar 

  27. Liu H, Wang MQ, Chen ZY, Chen H, Xu MW, Bao SJ (2017) Dalton Trans 46:15646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21406144, U1403294), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xugen Wang or Feng Yu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Xu, Z., He, P. et al. Zinc and Nitrogen-Doped Carbon In-Situ Wrapped ZnO Nanoparticles as a High-Activity Catalyst for Acetylene Acetoxylation. Catal Lett 150, 1155–1162 (2020). https://doi.org/10.1007/s10562-019-02971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02971-9

Keywords

Navigation