Skip to main content
Log in

Production and Application of Highly Efficient and Reusable Palladium Nanocatalyst Decorated on the Magnetically Retrievable Chitosan/Activated Carbon Composite Microcapsules

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study reports (i) the production of magnetically retrievable microcapsules as immobilizing agents, which are composed of chitosan/activated carbon composite (CS-AC/Fe3O4), (ii) the green synthesis of highly stable palladium nanoparticles on CS-AC/Fe3O4 without using any toxic reducing agents (Pd NPs@CS-AC/Fe3O4), (iii) the investigation of catalytic behavior of Pd NPs@CS-AC/Fe3O4 in Suzuki–Miyaura reactions of different aryl iodides, bromides, and chlorides, and (iv) the examination of recoverability and reusability of Pd NPs@CS-AC/Fe3O4. The characterization of Pd NPs@CS-AC/Fe3O4 was performed by FT-IR, TG/DTG, XRD, SEM, and EDS analyses. It was found that the average sizes of palladium nanoparticles were changed in the range of 31–48 nm. The catalytic tests revealed that Pd NPs@CS-AC/Fe3O4 was a very effective catalyst against synthesis of various biaryl compounds via Suzuki–Miyaura reactions, by giving high reaction yields under mild reaction conditions. Furthermore, it was found that Pd NPs@CS-AC/Fe3O4 was a highly retrievable and practical nanocatalyst due to its reusable nature. Pd NPs@CS-AC/Fe3O4 gave 95% of yield after ten successive cycles. These results show that Pd NPs@CS-AC/Fe3O4 is a superb catalyst and it can be applied in different catalytic systems or industrial applications due to the fact that it offers notable advantages such as high catalytic performance, reusability, stability, excellent functional group tolerance, wide substrate scope, and simple separation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ronson TO, Taylor RJ, Fairlamb IJ (2015) Tetrahedron 7(71):989–1009

    Google Scholar 

  2. Nasrollahzadeh M, Sajadi SM, Maham M (2015) J Mol Catal A 396:297–303

    CAS  Google Scholar 

  3. Sedighipoor M, Kianfar AH, Mohammadnezhad G, Görls H, Plass W (2018) Inorg Chim Acta 476:20–26

    CAS  Google Scholar 

  4. Farzad E, Veisi H (2018) J Ind Eng Chem 60:114–124

    CAS  Google Scholar 

  5. Veisi H, Najafi S, Hemmati S (2018) Int J Biol Macromol 113:186–194

    CAS  PubMed  Google Scholar 

  6. Karanjit S, Kashihara M, Nakayama A, Shrestha LK, Ariga K, Namba K (2018) Tetrahedron 74(9):948–954

    CAS  Google Scholar 

  7. Duan X, Liu J, Hao J, Wu L, He B, Qiu Y, He Z, Xi J, Wang S (2018) Carbon 130:806–813

    CAS  Google Scholar 

  8. Abbas Khakiani B, Pourshamsian K, Veisi HA (2015) Appl Organomet Chem 29(5):259–265

    CAS  Google Scholar 

  9. Hemmati S, Mehrazin L, Pirhayati M, Veisi H (2019) Polyhedron 158:414–422

    CAS  Google Scholar 

  10. Veisi H, Biabri PM, Falahi H (2017) Tetrahedron lett 58(35):3482–3486

    CAS  Google Scholar 

  11. Camacho-Espinoza M, Penieres-Carrillo JG, Rios-Guerra H, Lagunas-Rivera S, Ortega-Jiménez F (2019) J Organomet Chem 880:386–391

    CAS  Google Scholar 

  12. Kaboudin B, Salemi H, Mostafalu R, Kazemi F, Yokomatsu T (2016) J Organomet Chem 818:1951–1959

    Google Scholar 

  13. Chen L, Gao Z, Li Y (2015) Catal Today 245:122–128

    CAS  Google Scholar 

  14. Pourjavadi A, Motamedi A, Marvdashti Z, Hosseini SH (2017) Catal Commun 97:27–31

    CAS  Google Scholar 

  15. Veisi H, Ghorbani-Vaghei R, Hemmati S, Aliani MH, Ozturk T (2015) Appl Organomet Chem 29(1):26–32

    CAS  Google Scholar 

  16. Lebaschi S, Hekmati M, Veisi H (2017) J Colloid Interface Sci 485:223–231

    CAS  PubMed  Google Scholar 

  17. Fakhri P, Nasrollahzadeh M, Jaleh B (2014) RSC Adv 4(89):48691–48697

    CAS  Google Scholar 

  18. Polshettiwar V, Molnár Á (2007) Tetrahedron 63(30):6949–6976

    CAS  Google Scholar 

  19. Mulahmetovic E, Hargaden G (2017) Rev J Chem 7(4):373–398

    CAS  Google Scholar 

  20. Baran T, Sargın İ, Kaya M, Mulerčikas P, Kazlauskaitė S, Menteş A (2018) Chem Eng J 331:102–113

    CAS  Google Scholar 

  21. Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73(38):5624–5633

    CAS  Google Scholar 

  22. Cui X, Zuo W, Tian M, Dong Z, Ma J (2016) J Mol Catal A 423:386–392

    CAS  Google Scholar 

  23. Augustine RL, O’Leary ST (1995) J Mol Catal A 95(3):277–285

    CAS  Google Scholar 

  24. Veisi H, Manesh AA, Eivazi N, Faraji AR (2015) RSC Adv 5(26):20098–20107

    CAS  Google Scholar 

  25. Byun J-W, Lee Y-S (2004) Tetrahedron Lett 45(9):1837–1840

    CAS  Google Scholar 

  26. Zhang Z, Wang Z (2006) J Org Chem 71(19):7485–7487

    CAS  PubMed  Google Scholar 

  27. Sin E, Yi S-S, Lee Y-S (2010) J Mol Catal A 315(1):99–104

    CAS  Google Scholar 

  28. Guibal E (2005) Prog Polym Sci 30(1):71–109

    CAS  Google Scholar 

  29. Zeng M, Zhang X, Shao L, Qi C, Zhang X-M (2012) J Organomet Chem 704:29–37

    CAS  Google Scholar 

  30. Fang B, Wei YZ, Kumagai M (2006) J Power Sources 155(2):487–491

    CAS  Google Scholar 

  31. Liu Y, Miao X, Zhu J, Zhang Z, Cheng Z, Zhu X (2012) Macromol Chem Phys 213(8):868–877

    CAS  Google Scholar 

  32. Makhubela BC, Jardine A, Smith GS (2011) Appl Catal A 393(1–2):231–241

    CAS  Google Scholar 

  33. Baran T, Sargin I, Kaya M, Menteş A, Ceter T (2017) J Colloid Interf Sci 486:194–203

    CAS  Google Scholar 

  34. Veisi H, Pirhayati M, Kakanejadifard A (2017) Tetrahedron Lett 58(45):4269–4276

    CAS  Google Scholar 

  35. Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018) Sep Purif Technol 197:253–260

    CAS  Google Scholar 

  36. Veisi H, Kakanejadifard A (2016) RSC Adv 6(32):27252–27259

    Google Scholar 

  37. Faria VW, Oliveira DG, Kurz MH, Gonçalves FF, Scheeren CW, Rosa GR (2014) RSC Adv 4(26):13446–13452

    CAS  Google Scholar 

  38. Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y (2012) Tetrahedron 68(18):3577–3584

    CAS  Google Scholar 

  39. Han D, Zhang Z, Bao Z, Xing H, Ren Q (2018) Front Chem Sci Eng 12(1):24–31

    CAS  Google Scholar 

  40. Hajipour AR, Kalantari Tarrari M, Jajarmi S (2018) Appl Organomet Chem 32(3):e4171

    Google Scholar 

  41. Heidari F, Hekmati M, Veisi HM (2017) J Colloid Interf Sci 501:175–184

    CAS  Google Scholar 

  42. Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A, Khalaj M (2015) J Mol Catal A 396:31–39

    CAS  Google Scholar 

  43. Veisi H, Ghadermazi M, Naderi A (2016) Appl Organomet Chem 30(5):341–345

    CAS  Google Scholar 

  44. Sobhani S, Zeraatkar Z, Zarifi F (2015) New J Chem 39(9):7076–7085

    CAS  Google Scholar 

  45. Sarkar SM, Rahman ML, Yusoff MM (2015) RSC Adv 5(2):1295–1300

    CAS  Google Scholar 

  46. Hajipour AR, Tadayoni NS, Khorsandi Z (2016) Appl Organomet Chem 30(7):590–595

    CAS  Google Scholar 

  47. Tamami B, Ghasemi S (2010) J Mol Catal A 322(1–2):98–105

    CAS  Google Scholar 

  48. Veisi H, Ghorbani M, Hemmati S (2019) Mater Sci Eng C 98:584–593

    CAS  Google Scholar 

  49. Veisi H, Mirshokraie SA, Ahmadian H (2018) Int J Biol Macromol 108:419–425

    CAS  PubMed  Google Scholar 

  50. Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SC, Chen Y (2018) PLoS ONE 13(2):e0193281

    PubMed  PubMed Central  Google Scholar 

  51. Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Faryadi S (2017) Cr Chim 20(2):132–139

    CAS  Google Scholar 

  52. Yu L, Han Z (2016) Mater Lett 184:312–314

    CAS  Google Scholar 

  53. Boruah PR, Gehlot PS, Kumar A, Sarma D (2018) Mol Catal 461:54–59

    CAS  Google Scholar 

  54. Esmaeilpour M, Sardarian AR, Firouzabadi H (2018) J Organomet Chem 873:22–34

    CAS  Google Scholar 

  55. Wang X, Hu P, Xue F, Wei Y (2014) Carbohydr Polym 114:476–483

    CAS  PubMed  Google Scholar 

  56. Yılmaz Baran N, Baran T, Menteş A (2018) Carbohydr Polym 181:596–604

    PubMed  Google Scholar 

  57. Paul D, Rudra S, Rahman P, Khatua S, Pradhan M, Chatterjee PN (2018) J Organomet Chem 871:96–102

    CAS  Google Scholar 

  58. Kandathil V, Koley TS, Manjunatha K, Dateer RB, Keri RS, Sasidhar BS, Patil AS, Patil AS (2018) Inorgan Chim Acta 478:195–210

    CAS  Google Scholar 

  59. Puthiaraj P, Ahn W-S (2015) Catal Commun 65:91–95

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Baran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, T. Production and Application of Highly Efficient and Reusable Palladium Nanocatalyst Decorated on the Magnetically Retrievable Chitosan/Activated Carbon Composite Microcapsules. Catal Lett 149, 1496–1503 (2019). https://doi.org/10.1007/s10562-019-02739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02739-1

Keywords

Navigation