Skip to main content

Advertisement

Log in

A Highly Effective Cu/ZnO/Al2O3 Catalyst for Hydrogenation of Methyl Benzoate to Benzyl Alcohol in Methanol Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Cu/ZnO/Al2O3 catalysts prepared by co-precipitation method were used for the hydrogenation of methyl benzoate to benzyl alcohol. These catalysts were characterized at various stages of preparation by nitrogen adsorption–desorption, X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The experimental results show that the addition of ZnO to the catalyst greatly improves the selectivity of benzyl alcohol. When the Cu/Zn/Al molar ratio is 2:2:1 and the calcination temperature of the catalyst is 650 °C, the catalyst exhibits very highly catalytic performance. In addition, the effects of reaction temperature, pressure and time were also investigated during the hydrogenation of methyl benzoate to benzyl alcohol. When the methyl benzoate was hydrogenated over this catalyst at 160 °C and 7 MPa of H2 for 10 h, the conversion of methyl benzoate can reach 93.89% and the selectivity of benzyl alcohol is 88%. This effectively catalytic performance can be attributed to the presence of highly dispersed and stable metallic copper nanoparticles, and the weak acidity of the catalyst surface. Besides, the reaction pressure and temperature play a crucial role in the conversion of methyl benzoate and the selectivity of benzyl alcohol.

Graphical Abstract

Application of Cu/ZnO/Al2O3 catalyst in hydrogenation of methyl benzoate to benzyl alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Jayesh TB, Itika K, Ramesh Babu GV, Rama Rao KS, .Keri RS, Jadhav AH, Nagaraja BM (2018) Catal Commun 106:73–77

    Article  CAS  Google Scholar 

  2. Dub PA, Ikariya T (2012) ACS Catal 2:1718–1741

    Article  CAS  Google Scholar 

  3. Adkins HI, Pavlic AA (1947) J Am Chem Soc 69(12):3039–3041

    Article  CAS  PubMed  Google Scholar 

  4. Mozingo R, Folkers K (1948) J Am Chem Soc 70(1):229–231

    Article  CAS  PubMed  Google Scholar 

  5. Seyden-Penne J, Nguyen C, Burdett J (1997) J Organomet Chem 426(1):C22–C23

    Google Scholar 

  6. Santiago MAN, Sánchez-Castillo MA, Cortright RD, Dumesic JA (2000) J Catal 193(1):16–28

    Article  CAS  Google Scholar 

  7. Twigg M, Spencer M (2001) Appl Catal A 212:161–174

    Article  CAS  Google Scholar 

  8. He L, Cheng H, Liang G, Yu Y, Zhao F (2013) Appl Catal A 452:88–93

    Article  CAS  Google Scholar 

  9. Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhou Z, Sun T, Wang L, Meng H, Zhang H, Chen W (2018) J Catal 357:223–237

    Article  CAS  Google Scholar 

  10. Zhu Y, Kong X, Zhu S, Dong F, Zheng H, Zhu Y, Li Y (2015) Appl Catal B 166–167:551–559

    Article  CAS  Google Scholar 

  11. Hu Q, Fan G, Zhang S, Yang L, Li F (2015) J Mol Catal A Chem 397:134–141

    Article  CAS  Google Scholar 

  12. Zhu Y, Kong X, Cao D, Cui J, Zhu Y, Li Y (2014) ACS Catal 4(4):3675–3681

    Article  CAS  Google Scholar 

  13. Yang X, Meng Q, Ding G, Wang Y, Zhu Y, Li Y (2018) Appl Catal A 561(5):78–86

    Article  CAS  Google Scholar 

  14. Brands DS, Poels EK, Bliek A (1999) Appl Catal A 184(2):279–289

    Article  CAS  Google Scholar 

  15. Scheur FTVD, Linden BVD, Mittelmeijer-Hazeleger MC, Nazloomian JG, Staat LH (1994) Appl Catal A 111(1):63–77

    Article  Google Scholar 

  16. Claus P, Lucas M, Lücke B, Berndt T, Birke P (1991) Appl Catal A 79(1):1–18

    Article  CAS  Google Scholar 

  17. Frost J (1988) Nature 334(6183):577–580

    Article  CAS  Google Scholar 

  18. Gao C, Xiao X, Mao D, Lu G (2013) Catal Sci Technol 3(4):1056–1062

    Article  CAS  Google Scholar 

  19. Twigg MV, Spencer MS (2001) Appl Catal A 212:161–174

    Article  CAS  Google Scholar 

  20. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B 56(1–2):87–93

    Article  CAS  Google Scholar 

  21. Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2010) J Catal 271(2):178–185

    Article  CAS  Google Scholar 

  22. Melian-Cabrera I, Granados ML, Fierro JLG (2002) J Catal 210(2):273–284

    Article  CAS  Google Scholar 

  23. Bahmani M, Farahani BV, Sahebdelfar S (2016) Appl Catal A 520:178–187

    Article  CAS  Google Scholar 

  24. Schumann J, Eichelbaum M, Lunkenbein T, Thomas N, Galván MCÁ, Schlögl R, Behrens M (2015) ACS Catal 5(6):3260–3270

    Article  CAS  Google Scholar 

  25. Li Z, Zheng HY, Xie KC (2008) Chin J Catal 29(5):431

    Google Scholar 

  26. Li W, Fan G, Yang L, Li F (2016) Catal Sci Technol 6(7):2337–2348

    Article  CAS  Google Scholar 

  27. Perret N, Cárdenas-Lizana F, Keane MA (2011) Catal Commun 16(1):159–164

    Article  CAS  Google Scholar 

  28. Zhu Y, Zhu Y, Ding G, Zhu S, Zheng H, Li Y (2013) Appl Catal A 468(12):296–304

    Article  CAS  Google Scholar 

  29. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K (2005) Catal Commun 6(10):645–649

    Article  CAS  Google Scholar 

  30. Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Appl Catal A 433–434(16):128–134

    Article  CAS  Google Scholar 

  31. Shi Z (2016) Catal Sci Technol 6(10):3457–3467

    Article  CAS  Google Scholar 

  32. Li T, Fu C, Qi J, Pan J, Chen S, Lin J (2013) React Kinet Mech Cat 109(1):117–131

    Article  CAS  Google Scholar 

  33. Busca G (2014) Catal Today 226(1):2–13

    Article  CAS  Google Scholar 

  34. Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F (2013) J Energy Chem 22(6):919–927

    Article  CAS  Google Scholar 

  35. Yang X, Xiang X, Chen H, Zheng H, Li Y-W, Zhu Y (2017) ChemCatChem 9:3023–3030

    Article  CAS  Google Scholar 

  36. Yang X, Chen H, Meng Q, Zheng H, Zhu Y, Li Y (2017) Catal Sci Technol 7:5625–5634

    Article  CAS  Google Scholar 

  37. Zhang B, Chen Y, Li J, Pippel E, Yang H, Gao Z, Qin Y (2015) ACS Catal 5:5567–5573

    Article  CAS  Google Scholar 

  38. Zhang B, Zhu Y, Ding G, Zheng H, Li Y (2012) Appl Catal A 443:191–201

    Article  CAS  Google Scholar 

  39. Asao N, Nogami T, Takahashi K, Yamamoto Y (2002) J Am Chem Soc 124(5):764–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the technology institute of Shanghai Huayi (Group) Company, Jilin Province Science and Technology research plan (key scientific research project) (No. 20150204020GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlu Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1117 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Bao, Q., Gui, W. et al. A Highly Effective Cu/ZnO/Al2O3 Catalyst for Hydrogenation of Methyl Benzoate to Benzyl Alcohol in Methanol Solution. Catal Lett 149, 1359–1367 (2019). https://doi.org/10.1007/s10562-019-02721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02721-x

Keywords

Navigation