Skip to main content
Log in

Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An extremophilic amylase from Alkalilimnicola sp. NM-DCM-1 was expressed and purified. The amylase, AmyD8, was extremophilic, with maximal activity at 55 °C, pH 10.5 and 2.4 M NaCl. AmyD8 had a broad substrate utilization spectrum, hydrolyzing branched and linear substrates. AmyD8 was stable and active in nonionic and anionic surfactants. AmyD8 was organic solvent resistant, retaining activity after incubation in benzene, methanol, ethanol and isopropanol. AmyD8 was entrapped in an agar–agar matrix with 89% entrapment yield and no loss in relative activity. Entrapped AmyD8 retained its extremophilic properties. Entrapment enhanced AmyD8’s thermal stability, the half-life of the entrapped enzyme nearly doubled after incubation at 50–65 °C. Entrapped AmyD8 had excellent recyclability, retaining 58% of initial activity after 16 hydrolysis cycles. These extreme properties give AmyD8 great economic feasibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Q, Han Y, Xiao H (2017) Process Biochem 53:88–101

    Article  CAS  Google Scholar 

  2. Husain Q (2017) Biocatalysis 3:37–53

    Article  Google Scholar 

  3. Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC (2016) Process Biochem 51:1380–1390

    Article  CAS  Google Scholar 

  4. Kruger A, Schafers C, Schroder C, Antranikian G (2018) New Biotechnol 40:144–153

    Article  CAS  Google Scholar 

  5. Zhang Y, Ge J, Liu Z (2015) ACS Catal 5:4503–4513

    Article  CAS  Google Scholar 

  6. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) Catalysts 8:92

    Article  CAS  Google Scholar 

  7. Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HM (2017) Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  8. Asgher M, Noreen S, Bilal M (2017) Int J Biol Macromol 95:54–62

    Article  CAS  PubMed  Google Scholar 

  9. Bibi Z, Shahid F, Qader SHU, Aman A (2015) Int J Biol Macromol 75:121–127

    Article  CAS  PubMed  Google Scholar 

  10. Rehman HU, Aman A, Nawaz MA, Karim A, Ghani M, Baloch AH, Qader SHU (2016) Int J Biol Macromol 82:127–133

    Article  CAS  Google Scholar 

  11. Sattar H, Aman A, Qader SHU (2018) Int J Biol Macromol 111:917–922

    Article  CAS  PubMed  Google Scholar 

  12. Prakash O, Jaiswal N (2011) World Appl Sci J 13:572–577

    CAS  Google Scholar 

  13. Mesbah NM, Wiegel J (2017) BioEnergy Res 10:583–591

    Article  CAS  Google Scholar 

  14. Wilson K (1997) Preparation of genomic DNA from Bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5

    Google Scholar 

  15. Miller G (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  16. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  17. Sindhu R, Binod P, Madhavan A, Beevi US, Mathew AK, Abraham A, Pandey A, Kumary V (2017) Bioresour Technol 245:1740–1748

    Article  CAS  PubMed  Google Scholar 

  18. Doukyu N, Ogino H (2010) Biochem Bioeng J 48:270–282

    CAS  Google Scholar 

  19. Doukyu N, Yamagishi W, Kuwahara H, Ogino H, Furuki N (2007) Extremophiles 11:781–788

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez-Lafuente R (2017) Molecules 22:601

    Article  CAS  Google Scholar 

  21. Kutcherlapati SNR, Yeole N, Jana T (2016) J Colloid Interface Sci 463:164–172

    Article  CAS  PubMed  Google Scholar 

  22. Adham NZ, Ahmed HM, Naim N (2010) J Microbiol Biotechnol 20:332–339

    CAS  PubMed  Google Scholar 

  23. Karam EA, Abdel Wahab WA, Saleh SAA, Hassan ME, Kansoh AL, Esawy MA (2017) Int J Biol Macromol 102:694–703

    Article  CAS  PubMed  Google Scholar 

  24. Jaiswal N, Pandey A, Dwivedi UN (2016) Int J Biol Macromol 86:288–295

    Article  CAS  PubMed  Google Scholar 

  25. Karim A, Nawaz MA, Aman A, Qader SHU (2017) Catal Lett 147:1792–1801

    Article  CAS  Google Scholar 

  26. Rodrigues EF, Ficanha AMM, Dallago RM, Treichel H, Reinehr CO, Machado TP, Nunes GB, Colla LM (2017) Bioresour Technol 225:134–141

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Liu X, Wang G (2011) J Integr Plant Biol 53:246–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US-Egypt Science and Technology Joint Fund in cooperation with the Suez Canal University (Egypt) under project number 1841 and the University of Georgia (USA) under project number NSF-OISE-1132412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha M. Mesbah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbah, N.M., Wiegel, J. Improvement of Activity and Thermostability of Agar-Entrapped, Thermophilic, Haloalkaliphilic Amylase AmyD8. Catal Lett 148, 2665–2674 (2018). https://doi.org/10.1007/s10562-018-2493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2493-2

Keywords

Navigation