Skip to main content

Advertisement

Log in

Dehydrogenation of Liquid Organic Hydrogen Carriers on Supported Pd Model Catalysts: Carbon Incorporation Under Operation Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Liquid organic hydrogen carriers (LOHCs) have great potential as a hydrogen storage medium needed for a future sustainable energy system. Dehydrogenation of LOHCs requires a catalyst, such as supported Pd nanoparticles. Under reaction conditions, hydrogen and carbon may diffuse into the bulk of supported Pd catalyst particles and affect their activity and selectivity. The detailed understanding of this process is critical for the use of LOHCs in future hydrogen storage technologies. In this work, we studied these processes in-situ on a Pd model catalyst using high-energy grazing incidence X-ray diffraction. Pd nanoparticles were evaporated in ultra-high vacuum on a polished α-Al2O3(0001) substrate. The particles, with an initial average size of ~ 3.4 nm, were investigated at elevated temperature during their interaction with H2 and methylcyclohexane (MCH) representing a model LOHC. The interaction with H2 was studied in-situ at partial pressures up to 1 bar and temperatures between 300 and 500 K. At 300 K, the Pd nanoparticles (NPs) show a transition from α-PdH to β-PdH as a function of the H2 pressure. The transition occurs gradually, which is attributed to the heterogeneity of the NP system. The hydrogen uptake in β-PdHx at 300 K and 1 bar is estimated to be XH ~ 0.37 ± 0.03 indicating that the miscibility gap is narrowed for the nanoparticular system. With increasing temperature, XH decreases until no β-PdH phase is formed anymore at 500 K. At the same temperature, we studied the interaction of the Pd/sapphire model catalyst with MCH, both in the presence and in the absence of H2. In the absence of H2, carbon is formed and diffuses into the bulk yielding PdCx with a C concentration of around x ~ 0.05 ± 0.01. In the presence of H2 in the gas phase, bulk carbon formation in the Pd/sapphire model catalyst is completely suppressed. These results show that Pd nanoparticles act as an adequate catalyst for the dehydrogenation of MCH.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All experimental data are available from the corresponding author upon request.

References

  1. Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Johánek V, Schauermann S, Laurin M, Gopinath CS, Libuda J, Freund HJ (2004) J Phys Chem B 108:14244

    Article  CAS  Google Scholar 

  3. Wang HF, Kaden WE, Dowler R, Sterrer M, Freund HJ (2012) Phys Chem Chem Phys 14:11525

    Article  CAS  PubMed  Google Scholar 

  4. Schauermann S, Nilius N, Shaikhutdinov S, Freund HJ (2013) Acc Chem Res 46:1673

    Article  CAS  PubMed  Google Scholar 

  5. Shao L, Zhang B, Zhang W, Teschner D, Girgsdies F, Schlögl R, Su DS (2012) Chem Eur J 18:14962

    Article  CAS  PubMed  Google Scholar 

  6. Schlögl R, Abd Hamid SB (2004) Angew Chem Int Ed 43:1628

    Article  CAS  Google Scholar 

  7. Mette K, Kühl S, Tarasov A, Willinger MG, Kröhnert J, Wrabetz S, Trunschke A, Scherzer M, Girgsdies F, Düdder H, Kähler K, Ortega KF, Muhler M, Schlögl R, Behrens M, Lunkenbein T (2016) ACS Catal 6:7238

    Article  CAS  Google Scholar 

  8. Eastman JA, Thompson LJ, Kestel BJ (1993) Phys Rev B 48:84

    Article  CAS  Google Scholar 

  9. Borodziński A (1999) Catal Lett 63:35

    Article  Google Scholar 

  10. Bos ANR, Westerterp KR (1993) Chem Eng Process 32:1

    Article  CAS  Google Scholar 

  11. Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Angew Chem 116:1421

    Article  Google Scholar 

  12. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) J Am Chem Soc 133:2362

    Article  CAS  PubMed  Google Scholar 

  13. Flanagan TB, Oates WA (1991) Annu Rev Mater Sci 21:269

    Article  CAS  Google Scholar 

  14. Stachurski J, Fra̧ckiewicz A (1985) J Less Common Met 108:249

    Article  CAS  Google Scholar 

  15. Ziemecki SB, Jones GA, Swartzfager DG, Harlow RL, Faber J Jr (1985) J Am Chem Soc 107:4547

    Article  CAS  Google Scholar 

  16. Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) Energy Environ Sci 4:2767

    Article  CAS  Google Scholar 

  17. Teichmann D, Arlt W, Wasserscheid P (2012) Int J Hydrog Energy 37:18118

    Article  CAS  Google Scholar 

  18. Preuster P, Alekseev A, Wasserscheid P (2017) Annu Rev Chem Biomol Eng 8:445

    Article  CAS  PubMed  Google Scholar 

  19. Emel’yanenko VN, Varfolomeev MA, Verevkin SP, Stark K, Müller K, Müller M, Bösmann A, Wasserscheid P, Arlt W (2015) J Phys Chem C 119:26381

    Article  CAS  Google Scholar 

  20. Sobota M, Nikiforidis I, Amende M, Zanón BS, Staudt T, Höfert O, Lykhach Y, Papp C, Hieringer W, Laurin M, Assenbaum A, Wasserscheid P, Steinrück HP, Görling A, Libuda J (2011) Chem Eur J 17:11542

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz M, Bachmann P, Silva TN, Mohr S, Scheuermeyer M, Späth F, Bauer U, Düll F, Steinhauer J, Hohner C, Döpper T, Noei N, Stierle A, Papp C, Steinrück HP, Wasserscheid P, Görling A, Libuda J (2017) Chem Eur J 23:14806

    Article  CAS  PubMed  Google Scholar 

  22. Amende M, Schernich S, Sobota M, Nikiforidis I, Hieringer W, Assenbaum D, Gleichweit C, Drescher HJ, Papp C, Steinrück HP, Görling A, Wasserscheid P, Laurin M, Libuda J (2013) Chem Eur J 19:10854

    Article  CAS  PubMed  Google Scholar 

  23. He T, Pei Q, Chen P (2015) J Energy Chem 24:587

    Article  Google Scholar 

  24. Preuster P, Papp C, Wasserscheid P (2017) Acc Chem Res 50:74

    Article  CAS  PubMed  Google Scholar 

  25. Amende M, Kaftan A, Bachmann P, Brehmer R, Preuster P, Koch M, Wasserscheid P, Libuda J (2016) Appl Surf Sci 360:671

    Article  CAS  Google Scholar 

  26. Amende M, Gleichweit C, Xu T, Höfert O, Koch M, Wasserscheid P, Steinrück HP, Papp C, Libuda J (2016) Catal Lett 146:851

    Article  CAS  Google Scholar 

  27. Lewis FA (1960) Platin Met Rev 4:132

    CAS  Google Scholar 

  28. Lewis FA (1961) Platin Met Rev 5:21

    CAS  Google Scholar 

  29. Lewis FA (1996) Int J Hydrog Energy 21:461

    Article  CAS  Google Scholar 

  30. Manchester FD, San-Martin A, Pitre JM (1994) J Phase Equilib 15:62

    Article  CAS  Google Scholar 

  31. Narehood DG, Kishore S, Goto H, Adair JH, Nelson JA, Gutiérrez HR, Eklund PC (2009) Int J Hydrog Energy 34:952

    Article  CAS  Google Scholar 

  32. Nelin G (1971) Phys Status Solidi B 45:527

    Article  CAS  Google Scholar 

  33. Wolf RJ, Lee MW, Davis RC, Fay PJ, Ray JR (1993) Phys Rev B 48:12415

    Article  CAS  Google Scholar 

  34. Ingham B, Toney MF, Hendy SC, Cox T, Fong DD, Eastman JA, Fuoss PH, Stevens KJ, Lassesson A, Brown SA, Ryan MP (2008) Phys Rev B 78:245408

    Article  CAS  Google Scholar 

  35. Kishore S, Nelson JA, Adair JH, Eklund PC (2005) J Alloys Compd 389:234

    Article  CAS  Google Scholar 

  36. Vogel W, He W, Huang QH, Zou Z, Zhang XG, Yang H (2010) Int J Hydrog Energy 35:8609

    Article  CAS  Google Scholar 

  37. Wilde M, Fukutani K, Naschitzki M, Freund HJ (2008) Phys Rev B 77:113412

    Article  CAS  Google Scholar 

  38. Teschner D, Vass E, Hävecker M, Zafeiratos S, Schnörch P, Sauer H, Knop-Gericke A, Schlögl R, Chamam M, Wootsch A, Canning AS, Gamman JJ, Jackson SD, McGregor J, Gladden LF (2006) J Catal 242:26

    Article  CAS  Google Scholar 

  39. Ouchaib T, Massardier J, Renouprez A (1989) J Catal 119:517

    Article  CAS  Google Scholar 

  40. Nolte P, Stierle A, Balmes O, Srot V, van Aken PA, Jeurgens LPH, Dosch H (2009) Catal Today 145:243

    Article  CAS  Google Scholar 

  41. Tew MW, Janousch M, Huthwelker T, van Bokhoven JA (2011) J Catal 283:45

    Article  CAS  Google Scholar 

  42. Neyman KM, Schauermann S (2010) Angew Chem Int Ed 49:4743

    Article  CAS  Google Scholar 

  43. Hejral U, Müller P, Balmes O, Pontoni D, Stierle A (2016) Nat Commun 7:10964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hejral U, Müller P, Shipilin M, Gustafson J, Franz D, Shayduk R, Rütt U, Zhang C, Merte LR, Lundgren E, Vonk V, Stierle A (2017) Phys Rev B 96:195433

    Article  Google Scholar 

  45. Nolte P, Stierle A, Kasper N, Jin-Phillipp NY, Reichert H, Rühm A, Okasinski J, Dosch H, Schöder S (2008) Phys Rev B 77:115444

    Article  CAS  Google Scholar 

  46. Deutsches Elektronen Synchrotron (DESY) (2016) J Large Scale Res Facil 2:A76

    Article  Google Scholar 

  47. Bruna JC, Gillet M, Gonzales V, Masek K, Matolín V (1998) Surf Rev Lett 5:403

    Article  CAS  Google Scholar 

  48. Stará I, Gonzalez V, Jungwirthová I, Mašek K, Matolín V (1998) Surf Rev Lett 5:397

    Article  Google Scholar 

  49. Schell N, King A, Beckmann F, Fischer T, Müller M, Schreyer A (2014) Mater Sci Forum 772:57

    Article  Google Scholar 

  50. van Rijn R, Ackermann MD, Balmes O, Dufrane T, Geluk A, Gonzalez H, Isern H, de Kuyper E, Petit L, Sole VA, Wermeille D, Felici R, Frenken JWM (2010) Rev Sci Instrum 81:014101

    Article  CAS  PubMed  Google Scholar 

  51. Suleiman M, Jisrawi NM, Dankert O, Reetz MT, Bähtz C, Kirchheim R, Pundt A (2003) J Alloys Compd 356–357:644

    Article  CAS  Google Scholar 

  52. Pundt A, Dornheim M, Guerdane M, Teichler H, Ehrenberg H, Reetz MT, Jisrawi NM (2002) Eur Phys J D 19:333

    CAS  Google Scholar 

  53. Pundt A, Suleiman M, Bähtz C, Reetz MT, Kirchheim R, Jisrawi NM (2004) Mater Sci Eng B 108:19

    Article  CAS  Google Scholar 

  54. Scherrer P (1918) Göttinger Nachrichten Math Phys 2:98

    Google Scholar 

  55. Baranowski B, Majchrzak S, Flanagan TB (1971) J Phys F 1:258

    Article  CAS  Google Scholar 

  56. Sachs C, Pundt A, Kirchheim R, Winter M, Reetz MT, Fritsch D (2001) Phys Rev B 64:075408

    Article  CAS  Google Scholar 

  57. Pundt A, Kirchheim R (2006) Annu Rev Mater Res 36:555

    Article  CAS  Google Scholar 

  58. Schalow T, Brandt B, Starr DE, Laurin M, Schauermann S, Shaikhutdinov SK, Libuda J, Freund HJ (2006) Catal Lett 107:189

    Article  CAS  Google Scholar 

  59. Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R (2006) J Phys Chem B 110:4947

    Article  CAS  PubMed  Google Scholar 

  60. Siller RH, McLellan RB, Rudee ML (1969) J Less Common Met 18:432

    Article  CAS  Google Scholar 

  61. Ziemecki SB, Jones GA, Swartzfager DG (1987) J Less Common Met 131:157

    Article  CAS  Google Scholar 

  62. Tew MW, Nachtegaal M, Janousch M, Huthwelker T, van Bokhoven JA (2012) Phys Chem Chem Phys 14:5761

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG). Special support by the DFG is acknowledged within the Cluster of Excellence “Engineering of Advanced Materials” (Project EXC 315) (Bridge Funding, jLAMS Initiative) and further projects. Parts of this research were carried out at PETRA III and DESY NanoLab at DESY, a member of the Helmholtz Association (HGF). Partial financial support by the DESY strategy fond (DSF) is acknowledged. We would like to thank Olof Gutowski for assistance in using beamline P07.

Funding

Funding was provided by Deutsche Forschungsgemeinschaft (Grant no. EXC 315) and also by Deutsches Elektronen-Synchrotron (Strategy Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Libuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, R., Waidhas, F., Bertram, M. et al. Dehydrogenation of Liquid Organic Hydrogen Carriers on Supported Pd Model Catalysts: Carbon Incorporation Under Operation Conditions. Catal Lett 148, 2901–2910 (2018). https://doi.org/10.1007/s10562-018-2487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2487-0

Keywords

Navigation