Skip to main content
Log in

Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Iron doped TiO2 materials were prepared by the sol–gel method and used as supports of gold nanoparticles synthesized by the deposition–precipitation technique. The gold–iron–titania catalysts were characterized by X-ray diffraction, Raman spectroscopy, N2 physisorption, UV–Vis spectroscopy as a function of temperature, H2-temperature programmed reduction, transmission electronic microscopy and X-ray photoelectron spectroscopy. The gold–iron catalysts were catalytically active during the CO oxidation reaction at low temperatures, reaching CO conversion percentages of almost 80% at room temperature. The Au/TiO2–Fe catalyst surface was characterized through infrared spectroscopy (DRIFTS) during the CO oxidation reaction to elucidate the active sites and the real carbon monoxide interaction during the reaction. A 24-h deactivation test corroborated a final deactivation of the catalysts of only 25% for both Au/TiO2–Fe 1 and the bare Au/TiO2. The results here obtained corroborate that the activity of the iron-doped TiO2 catalyst was higher than that of the bare TiO2 due to the iron incorporation into the TiO2 lattice, which allows the formation of surface oxygen vacancies and new adsorption sites which favor the CO adsorption and its oxidation to CO2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  2. Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  3. Parida KM, Mohapatra P, Moma J, Jordaan WA, Scurrell MS (2008) Effect of preparation methods on gold/titania catalysts for CO oxidation. J Mol Catal A 288:125–130

    Article  CAS  Google Scholar 

  4. Yu S, Yu HJ, Lee DM, Yi J (2012) Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. J Mater Chem 22:12629–12635

    Article  CAS  Google Scholar 

  5. Delannoy L, Weiher N, Tsapatsaris N, Beesley AM, Nchari L, Schroeder SLM, Louis C (2007) Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity. Top Catal 44:263–273

    Article  CAS  Google Scholar 

  6. Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88

    Article  CAS  Google Scholar 

  7. Macwan DP, Dave PN (2011) A review on nano-TiO2 sol-gel type syntheses and its applications. J Mater Sci 46:3669–3686

    Article  CAS  Google Scholar 

  8. Carretin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. Chem Eur J 13:7771–7779

    Article  Google Scholar 

  9. Parida KM, Sahu N, Mohapatra P, Scurrell MS (2010) Low temperature CO oxidation over gold supported mesoporous Fe–TiO2. J Mol Catal A 319:92–97

    Article  CAS  Google Scholar 

  10. Mohapatra P, Moma J, Parida KM, Jordaan WA, Scurrell MS (2007) Dramatic promotion of gold/titania for CO oxidation by sulphate ions. Chem Commun. https://doi.org/10.1039/B614267B

    Google Scholar 

  11. Parida KM, Sahu N, Tripathi AK, Kamble VS (2010) Gold promoted S,N-doped TiO2: an efficient catalyst for CO adsorption and oxidation. Environ Sci Technol 44:4155–4160

    Article  CAS  Google Scholar 

  12. Sahu N, Parida KM, Tripathi AK, Kamble VS (2011) Low temperature CO adsorption and oxidation over Au/rare earth-TiO2 nanocatalysts. Appl Catal A 399:110–116

    Article  CAS  Google Scholar 

  13. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) CuO/CeO2 catalysts: redox features and catalytic behaviors. Appl Catal A 288:116–125

    Article  CAS  Google Scholar 

  14. Moreau F, Bond GC (2006) CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal Today 114:362–368

    Article  CAS  Google Scholar 

  15. Rodríguez-González V, Zanella R, Calzada LA, Gómez R (2009) Low-temperature CO oxidation and long-term stability of Au/In2O3–TiO2 catalysts. J Phys Chem C 113:8911–8917

    Article  Google Scholar 

  16. Zanella R, Rodríguez-González V, Arzola Y, Moreno-Rodríguez A (2012) Au/Y-TiO2 catalyst: high activity and log-term stability in CO oxidation. ACS Catal 2:1–11

    Article  CAS  Google Scholar 

  17. Hinojosa-Reyes M, Zanella R, Maturano-Rojas V, Rodríguez-González V (2016) Gold–TiO2–Nickel catalysts for low temperature-driven CO oxidation reaction. Appl Surf Sci 368:224–232

    Article  CAS  Google Scholar 

  18. Hinojosa-Reyes M, Rodríguez-González V, Arriaga S (2012) Enhancing ethylbenzene vapor degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process. J Hazard Mater 209–210:365–371

    Article  Google Scholar 

  19. Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106:7634–7642

    Article  CAS  Google Scholar 

  20. Zanella R, Louis C (2005) Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples. Catal Today 107–108:768–777

    Article  Google Scholar 

  21. Gennari FC, Pasquevich DM (1998) Kinetics of the anatase-rutile transformation in TiO2 in the presence of Fe2O3. J Mater Sci 33:1571–1578

    Article  CAS  Google Scholar 

  22. Wang JA, Limas-Ballesteros R, López T, Moreno A, Gómez R, Novaro O, Bokhimi X (2001) Quantitative determination of titanium lattice defects and solid-state reaction mechanism in iron-doped TiO2 photocatalysts. J Phys Chem B 105:9692–9698

    Article  CAS  Google Scholar 

  23. Devi LG, Kumar SG, Murthy BN, Kottam N (2009) Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination. Catal Commun 10:794–798

    Article  CAS  Google Scholar 

  24. Khan H, Swati IK (2016) Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind Eng Chem Res 55:6619–6633

    Article  CAS  Google Scholar 

  25. McCusker LB, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC recommendations 2001). Pure Appl Chem 73:381–394

    Article  CAS  Google Scholar 

  26. Tompsett GA, Bowmaker GA, Cooney RP, Metson JB, Rodgers KA, Seakins JM (1995) The Raman spectrum of brookite, TiO2 (Pbc, Z = 8). J Raman Spectrosc 26:57–62

    Article  CAS  Google Scholar 

  27. Narayanan PS (1950) Raman spectrum of rutile (TiO2). Proc Indian Acad Sci 32:279–283

    Google Scholar 

  28. Xin B, Ren Z, Wang P, Liu J, Jing L, Fu H (2007) Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts. Appl Surf Sci 253:4390–4395

    Article  CAS  Google Scholar 

  29. Singh A, Kumari S, Shrivastav R, Dass S, Satsangi V (2008) Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. Int J Hydrog Energy 33:5363–5368

    Article  CAS  Google Scholar 

  30. Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition-precipitation: high activity and stability in CO oxidation. J Catal 281:40–49

    Article  CAS  Google Scholar 

  31. Wang C, Liu C, Zheng X, Chen J, Shen T (1998) The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloids Surf A 131:271–280

    Article  CAS  Google Scholar 

  32. Yu J, Xiang Q, Zhou M (2009) Preparation, characterization and visible-light driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl Catal B 90(3–4):595–602

    Article  CAS  Google Scholar 

  33. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Appl Catal A 391:367–376

    Article  CAS  Google Scholar 

  34. McCafferty E, Wightman JP (1998) Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf Interface Anal 26:549–564

    Article  CAS  Google Scholar 

  35. Santara B, Giri PK, Imakita K, Fujii M (2013) Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons. Nanoscale 5:5476–5488

    Article  CAS  Google Scholar 

  36. Su YS, Lee MY, Lin SD (1999) XPS and DRS of Au/TiO2 catalysts: effect of pretreatment. Catal Lett 57:49–53

    Article  CAS  Google Scholar 

  37. Hakkinen H, Abbet S, Sánchez A, Heiz U, Landman U (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42(11):1297–1300

    Article  CAS  Google Scholar 

  38. Bokhimi X, Zanella R, Morales A, Maturano V, Angeles-Chávez C (2011) Au/Rutile catalysts: effects of the activation atmosphere on the gold-support interaction. J Phys Chem C 115:5856–5862

    Article  CAS  Google Scholar 

  39. Bokhimi X, Zanella R, Angeles-Chávez C (2010) Rutile-supported Ir, Au, and Ir–Au catalysts for CO oxidation. J Phys Chem C 114:14101–14109

    Article  CAS  Google Scholar 

  40. Haruta M (2004) Gold as a novel catalyst in the 21 st century: preparation, working mechanism and applications. Gold Bull 37:27–36

    Article  CAS  Google Scholar 

  41. Hinojosa-Reyes M, Rodríguez-González V, Zanella R (2014) Gold nanoparticles supported on TiO2-Ni as catalysts for hydrogen purification via water–gas shift reaction. RSC Adv 4:4308–4316

    Article  CAS  Google Scholar 

  42. Boccuzzi F, Chiorino A, Manoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water-gas shift reaction of Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185

    Article  CAS  Google Scholar 

  43. Smith ML, Kumar N, Spivey JJ (2012) CO Adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J Phys Chem C 116:7931–7939

    Article  CAS  Google Scholar 

  44. Roze E, Gravejat P, Quinet E, Rousset JL, Bianchi D (2009) Impact of the reconstruction of gold particles on the heats of adsorbed on the Au sites of a 1% Au/Al2O3 catalyst. J Phys Chem C 113:1037–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DGAPA UNAM and CONACYT for funding this work within the framework of projects IN105416 and 1216, respectively. This work is also supported by the CB-2011/169597 and CONACYT-2014 Infrastructure S-2780 projects. We wish to thank V. Maturano Rojas, B. Rivera Escoto, A. Herrera Gómez and H. G. Silva Pereyra for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Hinojosa-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinojosa-Reyes, M., Camposeco-Solis, R., Zanella, R. et al. Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catal Lett 148, 383–396 (2018). https://doi.org/10.1007/s10562-017-2260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2260-9

Keywords

Navigation