Skip to main content

Advertisement

Log in

Layered Double Hydroxide Derived Mg2Al-LDO Supported and K-Modified Ru Catalyst for Hydrogen Production via Ammonia Decomposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mg–Al mixed oxide is derived via the precursor of Mg2Al-layered double hydroxide (Mg2Al-LDH), and employed to load Ru and KNO3 to develop the K–Ru/Mg2Al-LDO catalyst for hydrogen production through ammonia decomposition. Single MgO and Al2O3 were used to prepare reference catalysts K–Ru/MgO and K–Ru/Al2O3 for comparison. A mechanically mixed K–Ru/MgO and K–Ru/Al2O3 sample was also made to explore the interaction of oxide constituents. K–Ru/Mg2Al-LDO generally outperforms K–Ru/MgO and K–Ru/Al2O3 as well as the Ru-based catalysts supported on other transition metal oxides. The comparison study demonstrated significant impact of structural homogeneity and strong interaction of the oxide constituents on activity. The unique structural feature of Mg2Al-LDO gives rise to the enhanced surface basicity, low-temperature feasible N2 desorption, and remarkable hydrogen spillover effect. All these aspects are favorable on K–Ru/Mg2Al-LDO for electronic modification of Ru sites, rate-determining steps in both low and high reaction temperature, and quick recycle of active sites, accounting for its superior activity plus good durability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Idem RO, Bakhshi NN (1994) Ing Eng Chem Res 33(9):2047

    Article  CAS  Google Scholar 

  2. Choudhary VR, Uphade BS, Mamman AS (1997) J Catal 172(2):281

    Article  CAS  Google Scholar 

  3. Choudhary TV, Goodman DW (1999) Catal Lett 59(2–4):93

    Article  CAS  Google Scholar 

  4. Choudhary TV, Goodman DW (2000) J Catal 192(2):316

    Article  CAS  Google Scholar 

  5. Sato K, Abe N, Kawagoe T, Miyahara S-I, Honda K, Nagaoka K (2017) Int J Hydrogen Energy 42(10):6610

    Article  CAS  Google Scholar 

  6. Yin SF, Xu BQ, Zhou XP, Au CT (2004) Appl Catal A 277(1–2):1

    Article  CAS  Google Scholar 

  7. García-Bordejé E, Armenise S, Roldán L (2014) Catal Rev 56(2):220

    Article  Google Scholar 

  8. Bell TE, Torrente-Murciano L (2016) Top Catal 59(15):1438

    Article  CAS  Google Scholar 

  9. Varisli D, Kaykac NG (2016) Int J Hydrogen Energy 41(14):5955

    Article  CAS  Google Scholar 

  10. Su Q, Gu L, Yao Y, Zhao J, Ji W, Ding W, Au C-T (2017) Appl Catal B 201:451

    Article  CAS  Google Scholar 

  11. Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au C-T (2004) J Catal 224(2):384

    Article  CAS  Google Scholar 

  12. Yin SF, Xu BQ, Ng CF, Au CT (2004) Appl Catal B 48(4):237

    Article  CAS  Google Scholar 

  13. Wang SJ, Yin SF, Li L, Xu BQ, Ng CF, Au C-T (2004) Appl Catal B 52(4):287

    Article  CAS  Google Scholar 

  14. Hill AK, Torrente-Murciano L (2015) Appl Catal B 172–173:129

    Article  Google Scholar 

  15. Zhang J, Xu H, Ge Q, Li W (2006) Catal Commun 7(3):148

    Article  CAS  Google Scholar 

  16. Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catal Lett 72(3–4):197

    Article  CAS  Google Scholar 

  17. Yin SF, Xu BQ, Zhu WX, Ng CF, Zhou XP, Au CT (2004) Catal Today 93–95(0):27

    Article  Google Scholar 

  18. Li L, Wang Y, Xu ZP, Zhu Z (2013) Appl Catal A 467:246

    Article  CAS  Google Scholar 

  19. Li XK, Ji WJ, Zhao J, Wang S-J, Au C-T (2005) J Catal 236(2):181

    Article  CAS  Google Scholar 

  20. Morioka H, Shimizu Y, Sukenobu M, Ito K, Tanabe E, Shishido T, Takehira K (2001) Appl Catal A 215(1–2):11

    Article  CAS  Google Scholar 

  21. Nawfal M, Gennequin C, Labaki M, Nsouli B, Aboukaïs A, Abi-Aad E (2015) Int J Hydrogen Energy 40(2):1269

    Article  CAS  Google Scholar 

  22. Melo F, Morlanés N (2008) Catal Today 133–135:383

    Article  Google Scholar 

  23. Bahranowski K, Bueno G, Cortés Corberán V, Kooli F, Serwicka EM, Valenzuela RX, Wcisło K (1999) Appl Catal A 185(1):65

    Article  CAS  Google Scholar 

  24. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) J Catal 213(2):191

    Article  CAS  Google Scholar 

  25. Delidovich I, Palkovits R (2015) J Catal 327:1

    Article  CAS  Google Scholar 

  26. Yin SF, Xu BQ, Wang SJ, Ng CF, Au C-T (2004) Catal Lett 96(3–4):113

    Article  CAS  Google Scholar 

  27. Aika K-I, Hori H, Ozaki A (1972) J Catal 27(3):424

    Article  CAS  Google Scholar 

  28. Aika K-I, Ohya A, Ozaki A, Inoue Y, Yasumori I (1985) J Catal 92(2):305

    Article  CAS  Google Scholar 

  29. Murata S, Aika K-I (1992) J Catal 136(1):118

    Article  CAS  Google Scholar 

  30. Aika K-I, Takano T, Murata S (1992) J Catal 136(1):126

    Article  CAS  Google Scholar 

  31. Zeng HS, Inazu K, Aika K-I (2002) J Catal 211(1):33

    Article  CAS  Google Scholar 

  32. Li L, Zhu ZH, Yan ZF, Lu GQ, Rintoul L (2007) Appl Catal A 320:166

    Article  CAS  Google Scholar 

  33. Tsai W, Weinberg WH (1987) J Phys Chem 91(20):5302

    Article  CAS  Google Scholar 

  34. Jacobsen CJ, Dahl S, Hansen PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) J Mol Catal A 163(1):19

    Article  CAS  Google Scholar 

  35. Raróg-Pilecka W, Szmigiel D, Komornicki A, Zieliński J, Kowalczyk Z (2003) Carbon 41(3):589

    Article  Google Scholar 

  36. Ma Z, Zhao S, Xiong X, Hu B, Song C (2016) Catal Lett 146(11):2324

    Article  CAS  Google Scholar 

  37. Hinrichsen O, Rosowski F, Hornung A, Muhler M, Ertl G (1997) J Catal 165(1):33

    Article  CAS  Google Scholar 

  38. Zupanc C, Hornung A, Hinrichsen O, Muhler M (2002) J Catal 209(2):501

    Article  CAS  Google Scholar 

  39. Omotoso T, Boonyasuwat S, Crossley SP (2014) Green Chem 16(2):645

    Article  CAS  Google Scholar 

  40. Tada S, Minori D, Otsuka F, Kikuchi R, Osada K, Akiyama K, Satokawa S (2014) Fuel 129:219

    Article  CAS  Google Scholar 

  41. Jiang Z, Lan G, Liu X, Tang H, Li Y (2016) Catal Sci Technol 6(19):7259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial support from NSFC (21173118, 21373110) and MSTC (2013AA031703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Gu, L.L., Zhong, A.H. et al. Layered Double Hydroxide Derived Mg2Al-LDO Supported and K-Modified Ru Catalyst for Hydrogen Production via Ammonia Decomposition. Catal Lett 148, 894–903 (2018). https://doi.org/10.1007/s10562-017-2195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2195-1

Keywords

Navigation