Skip to main content
Log in

Biocatalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Biocatalysis is an enabling technology for chemists. Using isolated enzymes or whole cells gives access to a broad range of selective transformations—often inaccessible with ‘chemical’ catalysts. This contribution tries to summarize the present state-of-the-art in biocatalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Fig. 1
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41

Similar content being viewed by others

Elizabeth L. Bell, William Finnigan, … Sabine L. Flitsch

References

  1. Straathof AJJ (2013) Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev. doi:10.1021/cr400309c

    Google Scholar 

  2. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13(6):548–556

    CAS  Google Scholar 

  3. Schmid A, Hollmann F, Park JB, Bühler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13(4):359–366

    CAS  Google Scholar 

  4. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    CAS  Google Scholar 

  5. Nestl BM, Hammer SC, Nebel BA, Hauer B (2014) New generation of biocatalysts for organic synthesis. Angew Chem Int Ed 53:3070–3095. doi:10.1002/anie.201302195

    CAS  Google Scholar 

  6. Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43(7):788–824

    CAS  Google Scholar 

  7. Faber K (2011) Biotransformations in organic chemistry, 6th edn. Springer, Berlin

    Google Scholar 

  8. Drauz K, Groeger H, May O (eds) (2012) Enzyme catalysis in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  9. Hilterhaus L, Liese A (2007) Building blocks. In: Ulber R, Sell D (eds) White biotechnology, vol 105. Advances in biochemical engineering-biotechnology. Springer, Berlin, pp 133–173. doi:10.1007/10_033

    Google Scholar 

  10. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Google Scholar 

  11. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42(15):6236–6249. doi:10.1039/c3cs35511j

    CAS  Google Scholar 

  12. Bornscheuer U, Kazlauskas R (2006) Hydrolases in organic synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. Brenna E (2014) Synthetic methods for biologically active molecules—exploring the potential of bioreductions. Wiley-VCH, Weinheim

    Google Scholar 

  14. Loos K (2011) Biocatalysis in polymer chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  15. Tao J, Kazlauskas R (2011) Biocatalysis for green chemistry and chemical process development. Wiley, New York

    Google Scholar 

  16. Sheldon RA, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  17. Jeromin GE, Bertau M (2005) Bioorganicum. Wiley-VCH, Weinheim

    Google Scholar 

  18. Whittall J, Sutton PW (2010) Practical methods for biocatalysis and biotransformations. Wiley, Chichester

    Google Scholar 

  19. Grogan G (2009) Practical biotransformations—a Beginner’s guide. Wiley-VCH, Weinheim

    Google Scholar 

  20. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the Myths-Biocatalysis in industrial synthesis. Science 299(5613):1694–1697. doi:10.1126/science.1079237

    CAS  Google Scholar 

  21. Tufvesson PR, Lima-Ramos J, Nordblad M, Woodley JM (2010) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15(1):266–274. doi:10.1021/op1002165

    Google Scholar 

  22. Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14(2):122–129

    CAS  Google Scholar 

  23. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    CAS  Google Scholar 

  24. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT (2011) Protein engineering of alpha/beta-hydrolase fold enzymes. ChemBioChem 12(10):1508–1517. doi:10.1002/cbic.201000771

    CAS  Google Scholar 

  25. Kazlauskas RJ, Bornscheuer UT (2009) Finding better protein engineering strategies. Nat Chem Biol 5(8):526–529

    CAS  Google Scholar 

  26. Horsman GP, Liu AM, Henke E, Bornscheuer UT, Kazlauskas RJ (2003) Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl-3-bromo-2-methylpropanoate and ethyl-3-phenylbutyrate. Chem Eur J 9(9):1933–1939

    CAS  Google Scholar 

  27. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. ChemBioChem 9(11):1797–1804

    CAS  Google Scholar 

  28. Reetz MT, Wang L-W, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of casting for probing protein-sequence space. Angew Chem Int Ed 45(8):1236–1241

    CAS  Google Scholar 

  29. Reetz MT (2006) Directed evolution of enantioselective enzymes as catalysts for organic chemistry. In: Advanced catalysis. Elsevier, Amsterdam, pp 1–69

  30. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A (2005) Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew Chem Int Ed 44(27):4192–4196

    CAS  Google Scholar 

  31. Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13(1):3–9

    CAS  Google Scholar 

  32. Drummond DA, Iverson BL, Georgiou G, Arnold FH (2005) Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 350(4):806–816

    CAS  Google Scholar 

  33. You L, Arnold FH (1994) Directed evolution of subtilisin E from Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng 9(1):77–83

    Google Scholar 

  34. Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang X (2012) Efficient, chemoenzymatic process for manufacture of the boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J Am Chem Soc 134(14):6467–6472. doi:10.1021/ja3010495

    CAS  Google Scholar 

  35. Truppo MD, Rozzell JD, Turner NJ (2010) Efficient production of enantiomerically pure chiral amines at concentrations of 50 g/L using transaminases. Org Proc Res Dev 14(1):234–237. doi:10.1021/op900303q

    CAS  Google Scholar 

  36. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989):305–309. doi:10.1126/science.1188934

    CAS  Google Scholar 

  37. Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Proc Res Dev 14(1):188–192. doi:10.1021/op9002714

    CAS  Google Scholar 

  38. Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Cherat RN, Pai GG (2010) Development of a biocatalytic process as an alternative to the (−)-DIP-Cl-mediated asymmetric reduction of a key intermediate of montelukast. Org Proc Res Dev 14(1):193–198. doi:10.1021/op900272d

    CAS  Google Scholar 

  39. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25(3):338–344. doi:10.1038/nbt1286

    CAS  Google Scholar 

  40. Huisman GW, Gray D (2002) Towards novel processes for the fine-chemical and pharmaceutical industries. Curr Opin Biotechnol 13(4):352–358. doi:10.1016/s0958-1669(02)00335-x

    CAS  Google Scholar 

  41. Bornscheuer UT, Kazlauskas RJ (2004) Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 43(45):6032–6040

    CAS  Google Scholar 

  42. Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT (2011) Discovery and protein engineering of biocatalysts for organic synthesis. Adv Synth Catal 353:2191–2215. doi:10.1002/adsc.201100446

    CAS  Google Scholar 

  43. Turner NJ, O’Reilly E (2013) Biocatalytic retrosynthesis. Nat Chem Biol 9(5):285–288. doi:10.1038/nchembio.1235

    CAS  Google Scholar 

  44. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5(8):568–574. doi:10.1038/nchembio.203

    Google Scholar 

  45. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135(34):12480–12496. doi:10.1021/ja405051f

    CAS  Google Scholar 

  46. Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed 50(1):138–174. doi:10.1002/anie.201000826

    CAS  Google Scholar 

  47. Reetz MT (2009) Directed evolution of stereoselective hybrid catalysts. In: Ward T (ed) Topics in organometallic chemistry, vol 25. Springer, Berlin, pp 63–92

    Google Scholar 

  48. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2(4):891–903. doi:10.1038/nprot.2007.72

    CAS  Google Scholar 

  49. Hollmann F, Otten LG (2009) Enantioselectivity of enzymes. In: Begley TP (ed) Wiley encyclopedia of chemical biology. Wiley, New York

  50. Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22(1–3):1–9

    CAS  Google Scholar 

  51. Quinto T, Schwizer F, Zimbron JM, Morina A, Kohler V, Ward TR (2014) Expanding the chemical diversity in artificial imine reductases based on the biotin–streptavidin technology. ChemCatChem 6(4):1010–1014. doi:10.1002/cctc.201300825

    CAS  Google Scholar 

  52. Keller SG, Ringenberg MR, Häussinger D, Ward TR (2014) Evaluation of the formate dehydrogenase activity of three-legged pianostool complexes in dilute aqueous solution. Eur J Inorg Chem. doi:10.1002/ejic.201402348

    Google Scholar 

  53. Sehl T, Hailes HC, Ward JM, Wardenga R, von Lieres E, Offermann H, Westphal R, Pohl M, Rother D (2013) Zwei Schritte in einem Reaktionsgefäß: Enzymkaskaden zur selektiven Synthese von Nor(pseudo)ephedrin aus kostengünstigen Ausgangsmaterialien. Angewandte Chemie. doi:10.1002/ange.201300718

    Google Scholar 

  54. Kohler V, Wilson YM, Durrenberger M, Ghislieri D, Churakova E, Quinto T, Knorr L, Haussinger D, Hollmann F, Turner NJ, Ward TR (2013) Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 5(2):93–99

    CAS  Google Scholar 

  55. Ward TR (2011) Artificial metalloenzymes based on the biotin–avidin technology: enantioselective catalysis and beyond. Acc Chem Res 44(1):47–57. doi:10.1021/ar100099u

    CAS  Google Scholar 

  56. Ringenberg MR, Ward TR (2011) Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Chem Comm 47(30):8470–8476

    CAS  Google Scholar 

  57. Dürrenberger M, Heinisch T, Wilson YM, Rossel T, Nogueira E, Knörr L, Mutschler A, Kersten K, Zimbron MJ, Pierron J, Schirmer T, Ward TR (2011) Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines. Angew Chem Int Ed 50(13):3026–3029. doi:10.1002/ange.201007820

    Google Scholar 

  58. Heinisch T, Ward TR (2010) Design strategies for the creation of artificial metalloenzymes. Curr Opin Chem Biol 14(2):184–199

    CAS  Google Scholar 

  59. Steinreiber J, Ward TR (2009) Artificial metalloenzymes for enantioselective catalysis based on the biotin–avidin technology. In: Ward TR (ed) Bio-inspired catalysts. Springer-Verlag, Berlin, Heidelberg, pp 93–112

  60. Pordea A, Ward TR (2009) Artificial metalloenzymes: combining the best features of homogeneous and enzymatic catalysis. Synlett 20:3225–3236

    Google Scholar 

  61. Steinreiber J, Ward TR (2008) Artificial metalloenzymes as selective catalysts in aqueous media. Coord Chem Rev 252(5–7):751–766

    CAS  Google Scholar 

  62. Pierron J, Malan C, Creus M, Gradinaru J, Hafner I, Ivanova A, Sardo A, Ward Thomas R (2008) Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin–avidin technology. Angew Chem Int Ed 47(4):701–705

    CAS  Google Scholar 

  63. Mao JC, Ward TR (2008) Artificial metalloenzymes for enantioselective catalysis based on the biotin–avidin technology. Chimia 62(12):956–961. doi:10.2533/chimia.2008.956

    CAS  Google Scholar 

  64. Loosli A, Rusbandi UE, Gradinaru J, Bernauer K, Schlaepfer CW, Meyer M, Mazurek S, Novic M, Ward TR (2006) (Strept)avidin as host for biotinylated coordination complexes: stability, chiral discrimination, and cooperativity. Inorg Chem 45(2):660–668. doi:10.1021/ic051405t

    CAS  Google Scholar 

  65. Letondor C, Ward TR (2006) Artificial metalloenzymes for enantioselective catalysis: recent advances. ChemBioChem 7(12):1845–1852

    CAS  Google Scholar 

  66. Letondor C, Pordea A, Humbert N, Ivanova A, Mazurek S, Novic M, Ward TR (2006) Artificial transfer hydrogenases based on the biotin–(Strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein. J Am Chem Soc 128(25):8320–8328. doi:10.1021/ja061580o

    CAS  Google Scholar 

  67. Letondor C, Humbert N, Ward TR (2005) Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation. Proc Natl Acad Sci 102(13):4683–4687. doi:10.1073/pnas.0409684102

    CAS  Google Scholar 

  68. Klein G, Humbert N, Gradinaru J, Ivanova A, Gilardoni F, Rusbandi UE, Ward TR (2005) Tailoring the active site of chemzymes by using a chemogenetic-optimization procedure: towards substrate-specific artificial hydrogenases based on the biotin–avidin technology. Angew Chem 117(47):7942–7945

    Google Scholar 

  69. Skander M, Humbert N, Collot J, Gradinaru J, Klein G, Loosli A, Sauser J, Zocchi A, Gilardoni F, Ward TR (2004) Artificial metalloenzymes: (Strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium–diphosphine complexes. J Am Chem Soc 126(44):14411–14418. doi:10.1021/ja0476718

    CAS  Google Scholar 

  70. Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR (2003) Artificial metalloenzymes for enantioselective catalysis based on biotin–avidin. J Am Chem Soc 125(30):9030–9031. doi:10.1021/ja035545i

    CAS  Google Scholar 

  71. Reetz MT, Rentzsch M, Pletsch A, Maywald M, Maiwald P, Peyralans JJP, Maichele A, Fu Y, Jiao N, Hollmann F, Mondière R, Taglieber A (2007) Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis. Tetrahedron 63(28):6404–6414

    CAS  Google Scholar 

  72. Reetz MT, Peyralans JJ-P, Maichele A, Fu Y, Maywald M (2006) Directed evolution of hybrid enzymes: evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem Comm 4318–4320

  73. Reetz MT, Jiao N (2006) Copper–phthalocyanine conjugates of serum albumins as enantioselective catalysts in diels–alder reactions. Angew Chem Int Ed 45(15):2416–2419

    CAS  Google Scholar 

  74. Wilson ME, Whitesides GM (1978) Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J Am Chem Soc 100(1):306–307. doi:10.1021/ja00469a064

    CAS  Google Scholar 

  75. Gröger H, Hummel W (2014) Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr Opin Chem Biol 19:171–179. doi:10.1016/j.cbpa.2014.03.002

    Google Scholar 

  76. Rulli G, Heidlindemann M, Berkessel A, Hummel W, Groger H (2013) Towards catalyst compartimentation in combined chemo- and biocatalytic processes: Immobilization of alcohol dehydrogenases for the diastereoselective reduction of a beta-hydroxy ketone obtained from an organocatalytic aldol reaction. J Biotechnol 168(3):271–276. doi:10.1016/j.jbiotec.2013.08.031

    CAS  Google Scholar 

  77. Borchert S, Burda E, Schatz J, Hummel W, Gröger H (2012) Combination of a Suzuki cross-coupling reaction using a water-soluble palladium catalyst with an asymmetric enzymatic reduction towards a one-pot process in aqueous medium at room temperature. J Mol Catal B 84:89–93. doi:10.1016/j.molcatb.2012.03.006

    CAS  Google Scholar 

  78. Maid H, Böhm P, Huber SM, Bauer W, Hummel W, Jux N, Gröger H (2011) Eisenkatalyse zur In-situ-Regenerierung oxidierter Cofaktoren durch Aktivierung und Reduktion von O2: ein synthetisches Metalloporphyrin als biomimetische NAD(P)H-Oxidase. Angew Chem 123(10):2445–2448. doi:10.1002/ange.201004101

    Google Scholar 

  79. Kraußer M, Winkler T, Richter N, Dommer S, Fingerhut A, Hummel W, Gröger H (2011) Combination of C=C bond formation by Wittig reaction and enzymatic C=C bond reduction in a one-pot process in water. ChemCatChem 3(2):293–296. doi:10.1002/cctc.201000391

    Google Scholar 

  80. Burda E, Hummel W, Gröger H (2008) Modular chemoenzymatic one-pot syntheses in aqueous media: combination of a palladium-catalyzed cross-coupling with an asymmetric biotransformation. Angew Chem Int Ed 47(49):9551–9554. doi:10.1002/anie.200801341

    CAS  Google Scholar 

  81. Kraußer M, Hummel W, Gröger H (2007) Enantioselective one-pot two-step synthesis of hydrophobic allylic alcohols in aqueous medium through the combination of a Wittig reaction and an enzymatic ketone reduction. Eur J Org Chem 31:5175–5179

    Google Scholar 

  82. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312. doi:10.1039/b918763b

    CAS  Google Scholar 

  83. Tufvesson LM, Tufvesson P, Woodley JM, Börjesson P (2012) Life cycle assessment in green chemistry: overview of key parameters and methodological concerns. Int J Life Cycle Assess. doi:10.1007/s11367-012-0500-1

    Google Scholar 

  84. Calvo-Flores FG (2009) Sustainable chemistry metrics. ChemSusChem 2(10):905–919. doi:10.1002/cssc.200900128

    CAS  Google Scholar 

  85. Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? To calculate is to know. ChemCatChem 6(4):930–943

    CAS  Google Scholar 

  86. Eissen M, Brinkmann T, Klein M, Schwartze B, Weiß M (2011) Einsatz von Kennzahlen in frühen Phasen der Syntheseentwicklung—Zwei Fallstudien—Application of Metrics in Early Stages of Process Development—Two Case Studies. Chemie Ingenieur Technik 83(10):1597–1608. doi:10.1002/cite.201100114

    CAS  Google Scholar 

  87. Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M (2008) Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chem 10(1):31–36. doi:10.1039/b711717e

    CAS  Google Scholar 

  88. Eissen M (2012) Sustainable production of chemicals—an educational perspective. Chem Educ Res Pract 13(2):103–111

    CAS  Google Scholar 

  89. Heinzle E, Biwer A, Eissen M, Kholiq MA (2006) Evaluation of biotechnological processes in early phases of the development regarding risks concerning ecology, security and health. Chem Ing Tech 78(3):301–305. doi:10.1002/cite.200500191

    CAS  Google Scholar 

  90. Eissen M, Metzger JO (2002) Environmental performance metrics for daily use in synthetic chemistry. Chem-Eur J 8(16):3580–3585. doi:10.1002/1521-3765(20020816)8:16<3580:aid-chem3580>3.0.co;2-j

    CAS  Google Scholar 

  91. Eissen M, Geisler G, Bühler B, Fischer C, Hungerbühler K, Schmid A, Carreira EM (2008) In: Lapkin A, Constable DJC (eds) Mass balances and life cycle assessment, in green chemistry metrics: measuring and monitoring sustainable processes. John Wiley & Sons, Ltd, Chichester, pp 200–207. doi:10.1002/9781444305432.ch5

  92. Sheldon RA (2008) E factors, green chemistry and catalysis: an odyssey. Chem Comm 29:3352–3365. doi:10.1039/b803584a

    Google Scholar 

  93. Trost BM (1995) Atom economy—a challenge for organic-synthesis—homogeneous catalysis leads the way. Angew Chem-Int Edit Engl 34(3):259–281. doi:10.1002/anie.199502591

    CAS  Google Scholar 

  94. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254(5037):1471–1477. doi:10.1126/science.1962206

    CAS  Google Scholar 

  95. Thum O, Oxenbøll KM (2006) Biocatalysis: a sustainable process for production of cosmetic ingredients. Paper presented at the IFSCC Congress 2006, Osaka, Japan

  96. Shitu JO, Chartrain M, Woodley JM (2009) Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer–Villiger reaction. Biocatal Biotrans 27(2):107–117

    CAS  Google Scholar 

  97. Henderson RK, Jiminez-Gonzalez C, Preston C, Constable DJC, Woodley JM (2008) EHS & LCA assessment for 7-ACA synthesis A case study for comparing biocatalytic & chemical synthesis. Ind Biotechnol 4(2):180–192. doi:10.1089/ind.2008.4.180

    CAS  Google Scholar 

  98. Kuhn D, Kholiq MA, Heinzle E, Bühler B, Schmid A (2010) Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process. Green Chem 12:815–827

    CAS  Google Scholar 

  99. Friedrich S, Grobe G, Kluge M, Brinkmann T, Hofrichter M, Scheibner K (2014) Optimization of a biocatalytic process to gain (R)-1-phenylethanol by applying the software tool Sabento for ecological assessment during the early stages of development. J Mol Catal B 103:36–40. doi:10.1016/j.molcatb.2013.10.002

    CAS  Google Scholar 

  100. Paravidino M, Hanefeld U (2011) Enzymatic acylation: assessing the greenness of different acyl donors. Green Chem 13:2651–2657

    CAS  Google Scholar 

  101. Schrittwieser J, Coccia F, Kara S, Grischek B, Kroutil W, d’Alessandro N, Hollmann F (2013) One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols. Green Chem 15:3318–3331. doi:10.1039/c3gc41666f

    CAS  Google Scholar 

  102. Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic-synthesis. App Biochem Biotechnol 14(2):147–197. doi:10.1007/bf02798431

    CAS  Google Scholar 

  103. Weckbecker A, Groger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. In: Biosystems engineering I: creating superior biocatalysts, vol 120. Advances in biochemical engineering-biotechnology. Springer, Berlin, pp 195–242. doi:10.1007/10_2009_55

  104. Rodriguez C, Lavandera I, Gotor V (2012) Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr Org Chem 16(21):2525–2541. doi:10.2174/138527212804004643

    CAS  Google Scholar 

  105. Madje K, Schmolzer K, Nidetzky B, Kratzer R (2012) Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Microb Cell Factories 11. doi:10.1186/1475-2859-11-7

  106. Hatrongjit R, Packdibamrung K (2010) A novel NADP(+)-dependent formate dehydrogenase from Burkholderia stabilis 15516: screening, purification and characterization. Enz Microb Technol 46(7):557–561. doi:10.1016/j.enzmictec.2010.03.002

    CAS  Google Scholar 

  107. Ordu EB, Cameron G, Clarke AR, Karaguler NG (2009) Kinetic and thermodynamic properties of the folding and assembly of formate dehydrogenase. FEBS Lett 583(17):2887–2892. doi:10.1016/j.febslet.2009.07.048

    CAS  Google Scholar 

  108. Kratzer R, Pukl M, Egger S, Nidetzky B (2008) Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Microb Cell Fact 7:12. doi:10.1186/1475-2859-7-37

    Google Scholar 

  109. Churakova E, Tomaszewski B, Buehler K, Schmid A, Arends IWCE, Hollmann F (2014) Hydrophobic formic acid esters for cofactor regeneration in aqueous/organic two-liquid phase systems. Top Catal 57(5):385–391

    CAS  Google Scholar 

  110. Classen T, Korpak M, Scholzel M, Pietruszka J (2014) Stereoselective enzyme cascades: an efficient synthesis of chiral gamma-butyrolactones. ACS Catalysis 4(5):1321–1331. doi:10.1021/cs5000262

    CAS  Google Scholar 

  111. Pham SQ, Gao P, Li Z (2013) Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol Bioeng 110(2):363–373. doi:10.1002/bit.24632

    CAS  Google Scholar 

  112. Leuchs S, Na’amnieh S, Greiner L (2013) Enantioselective reduction of sparingly water-soluble ketones: continuous process and recycle of the aqueous buffer system. Green Chem 15(1):167–176

    CAS  Google Scholar 

  113. Kaswurm V, Hecke WV, Kulbe KD, Ludwig R (2013) Guidelines for the application of NAD(P)H regenerating glucose dehydrogenase in synthetic processes. Adv Synth Catal 355(9):1709–1714. doi:10.1002/adsc.201200959

    CAS  Google Scholar 

  114. Ma H, Yang L, Ni Y, Zhang J, Li C-X, Zheng G-W, Yang H, Xu J-H (2012) Stereospecific reduction of methyl o-chlorobenzoylformate at 300 g L−1 without additional cofactor using a carbonyl reductase mined from Candida glabrata. Adv Synth Catal 354(9):1765–1772. doi:10.1002/adsc.201100366

    CAS  Google Scholar 

  115. Ni Y, Li C-X, Wang L-J, Zhang J, Xu J-H (2011) Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org Biomol Chem 9(15):5463–5468

    CAS  Google Scholar 

  116. Ni Y, Li C-X, Zhang J, Shen N-D, Bornscheuer UT, Xu J-H (2011) Efficient reduction of ethyl 2-oxo-4-phenylbutyrate at 620 g L−1 by a bacterial reductase with broad substrate spectrum. Adv Synth Catal 353:1213–1217. doi:10.1002/adsc.201100132

    CAS  Google Scholar 

  117. Ni Y, Xu JH (2012) Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv 30(6):1279–1288. doi:10.1016/j.biotechadv.2011.10.007

    CAS  Google Scholar 

  118. Spickermann D, Kara S, Barackov I, Hollmann F, Schwaneberg U, Duenkelmann P, Leggewie C (2014) Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. J Mol Catal B 103:24–28. doi:10.1016/j.molcatb.2013.11.015

    CAS  Google Scholar 

  119. Kara S, Spickermann D, Weckbecker A, Leggewie C, Arends IWCE, Hollmann F (2014) Bioreductions catalyzed by an alcohol dehydrogenase in non-aqueous media. ChemCatChem 6(4):973–976. doi:10.1002/cctc.201300841

    CAS  Google Scholar 

  120. Kara S, Spickermann D, Schrittwieser JH, Leggewie C, Van Berkel WJH, Arends IWCE, Hollmann F (2013) More efficient redox biocatalysis by utilising 1,4-butanediol as ‘smart cosubstrate’. Green Chem 15:330–335

    CAS  Google Scholar 

  121. Mallin H, Wulf H, Bornscheuer UT (2013) A self-sufficient Baeyer–Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol. Enz Microb Technol 53(4):283–287. doi:10.1016/j.enzmictec.2013.01.007

    CAS  Google Scholar 

  122. Relyea HA, van der Donk WA (2005) Mechanism and applications of phosphite dehydrogenase. Bioorg Chem 33(3):171–189. doi:10.1016/j.bioorg.2005.01.003

    CAS  Google Scholar 

  123. Relyea HA, Vrtis JM, Woodyer R, Rimkus SA, van der Donk WA (2005) Inhibition and pH dependence of phosphite dehydrogenase. Biochemistry 44(17):6640–6649. doi:10.1021/bi047640p

    CAS  Google Scholar 

  124. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15(4):343–348. doi:10.1016/j.copbio.2004.06.010

    CAS  Google Scholar 

  125. Mertens R, Greiner L, van den Ban ECD, Haaker H, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B 24–25:39–52. doi:10.1016/s1381-1177(03)00071-7

    Google Scholar 

  126. Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2012) Stabilisation of the NAD(+)-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 through modification with methoxy-poly(ethylene) glycol. J Mol Catal B 74(3–4):219–223. doi:10.1016/j.molcatb.2011.10.008

    CAS  Google Scholar 

  127. Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2011) Systematic evaluation of the dihydrogen-oxidising and NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 as a cofactor regeneration catalyst. Biocatal Biotrans 29(6):246–252. doi:10.3109/10242422.2011.615393

    CAS  Google Scholar 

  128. Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8(2):120–126

    CAS  Google Scholar 

  129. Erdmann V, Mackfeld U, Rother D, Jakoblinnert A. Enantioselective, continuous (R)- and (S)-2-butanol synthesis: achieving high space-time yields with recombinant E. coli cells in a micro-aqueous, solvent-free reaction system. J Biotechnol. doi:10.1016/j.jbiotec.2014.06.032

  130. Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13:3007–3047

    CAS  Google Scholar 

  131. De Wildeman SMA, Sonke T, Schoemaker HE, May O (2007) Biocatalytic reductions: from lab curiosity to “first choice”. Acc Chem Res 40(12):1260–1266. doi:10.1021/ar7001073

    Google Scholar 

  132. Gooding OW, Voladri R, Bautista A, Hopkins T, Huisman G, Jenne S, Ma S, Mundorff EC, Savile MM, Truesdell SJ, Wong JW (2009) Development of a practical biocatalytic process for (R)-2-methylpentanol. Org Proc Res Dev 14(1):119–126. doi:10.1021/op9002246

    Google Scholar 

  133. Galletti P, Emer E, Gucciardo G, Quintavalla A, Pori M, Giacomini D (2010) Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases. Org Biomol Chem 8(18):4117–4123

    CAS  Google Scholar 

  134. Giacomini D, Galletti P, Quintavalla A, Gucciardo G, Paradisi F (2007) Highly efficient asymmetric reduction of arylpropionic aldehydes by Horse Liver Alcohol Dehydrogenase through dynamic kinetic resolution. Chem Comm 39:4038–4040

    Google Scholar 

  135. Friest JA, Maezato Y, Broussy S, Blum P, Berkowitz DB (2010) Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis dynamic reductive kinetic resolution entry into (S)-profens. J Am Chem Soc 132(17):5930–5931. doi:10.1021/ja910778p

    CAS  Google Scholar 

  136. Kalaitzakis D, Smonou I (2010) Highly diastereoselective synthesis of 2-substituted-1,3-diols catalyzed by ketoreductases. Tetrahedron 66(48):9431–9439. doi:10.1016/j.tet.2010.09.096

    CAS  Google Scholar 

  137. Kalaitzakis D, Smonou I (2010) A two-step, one-pot enzymatic synthesis of 2-substituted 1,3-diols. J Org Chem 75(24):8658–8661. doi:10.1021/jo101519t

    CAS  Google Scholar 

  138. Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B 5(1–4):1–11. doi:10.1016/S1381-1177(98)00009-5

    CAS  Google Scholar 

  139. Krix G, Bommarius AS, Drauz K, Kottenhahn M, Schwarm M, Kula MR (1997) Enzymatic reduction of [alpha]-keto acids leading to l-amino acids, d- or l-hydroxy acids. J Biotechnol 53(1):29–39

    CAS  Google Scholar 

  140. Bommarius AS, Schwarm M, Stingl K, Kottenhahn M, Huthmacher K, Drauz K (1995) Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron-Asymmetry 6(12):2851–2888. doi:10.1016/0957-4166(95)00377-0

    CAS  Google Scholar 

  141. Patel R, Hanson R, Goswami A, Nanduri V, Banerjee A, Donovan MJ, Goldberg S, Johnston R, Brzozowski D, Tully T, Howell J, Cazzulino D, Ko R (2003) Enzymatic synthesis of chiral intermediates for pharmaceuticals. J Ind Microbiol Biotechnol 30(5):252–259. doi:10.1007/s10295-003-0032-6

    CAS  Google Scholar 

  142. Patel RN (2001) Enzymatic synthesis of chiral intermediates for Omapatrilat, an antihypertensive drug. Biomol Eng 17(6):167–182. doi:10.1016/s1389-0344(01)00068-5

    CAS  Google Scholar 

  143. Patel Ramesh N (2001) Enzymatic Synthesis of Chiral Intermediates for Drug Development. Adv Synth Catal 343(6–7):527–546. doi:10.1002/1615-4169(200108)343:6/7<527:aid-adsc527>3.0.co;2-i

    Google Scholar 

  144. Patel RN (2002) Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals. Enz Microb Technol 31(6):804–826. doi:10.1016/s0141-0229(02)00186-2

    CAS  Google Scholar 

  145. Abrahamson MJ, Vázquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Entwicklung einer Amindehydrogenase zur Synthese von chiralen Aminen. Angew Chem 124(16):4036–4040. doi:10.1002/ange.201107813

    Google Scholar 

  146. Scheller PN, Fademrecht S, Hofelzer S, Pleiss J, Leipold F, Turner NJ, Nestl BM, Hauer B (2014) Enzyme toolbox: novel enantiocomplementary imine reductases. ChemBioChem. doi:10.1002/cbic.201402213

    Google Scholar 

  147. Huber T, Schneider L, Prag A, Gerhardt S, Einsle O, Muller M (2014) Direct reductive amination of ketones: structure and activity of S-selective imine reductases from streptomyces. ChemCatChem 6(8):2248–2252. doi:10.1002/cctc.201402218

    CAS  Google Scholar 

  148. Koszelewski D, Tauber K, Faber K, Kroutil W (2010) [omega]-Transaminases for the synthesis of non-racemic [alpha]-chiral primary amines. Trends Biotechnol 28(6):324–332

    CAS  Google Scholar 

  149. Simon RC, Richter N, Busto E, Kroutil W (2014) Recent developments of cascade reactions involving omega-transaminases. ACS Catalysis 4(1):129–143. doi:10.1021/cs400930v

    CAS  Google Scholar 

  150. Andrade LH, Silva AV, Milani P, Koszelewski D, Kroutil W (2010) omega-Transaminases as efficient biocatalysts to obtain novel chiral selenium–amine ligands for Pd-catalysis. Org Biomol Chem 8(9):2043–2051. doi:10.1039/b920946h

    CAS  Google Scholar 

  151. Kohls H, Steffen-Munsberg F, Hohne M (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr Opin Chem Biol 19:180–192. doi:10.1016/j.cbpa.2014.02.021

    CAS  Google Scholar 

  152. Song J-W, Lee J-H, Bornscheuer UT, Park J-B (2014) Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids. Adv Synth Catal 356(8):1782–1788. doi:10.1002/adsc.201300784

    CAS  Google Scholar 

  153. Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct terminal alkylamino-functionalization via multistep biocatalysis in one recombinant whole-cell catalyst. Adv Synth Catal 355(9):1693–1697. doi:10.1002/adsc.201200958

    CAS  Google Scholar 

  154. Mutti FG, Kroutil W (2012) Asymmetric bio-amination of ketones in organic solvents. Adv Synth Catal 354(18):3409–3413. doi:10.1002/adsc.201200900

    CAS  Google Scholar 

  155. Mutti FG, Fuchs CS, Pressnitz D, Turrini NG, Sattler JH, Lerchner A, Skerra A, Kroutil W (2012) Amination of ketones by employing two new (S)-selective ω-transaminases and the His-tagged ω-TA from vibrio fluvialis. Eur J Org Chem. doi:10.1002/ejoc.201101476

    Google Scholar 

  156. Truppo MD, Turner NJ (2010) Micro-scale process development of transaminase catalysed reactions. Org Biomol Chem 8(6):1280–1283. doi:10.1039/b924209k

    CAS  Google Scholar 

  157. Koszelewski D, Göritzer M, Clay D, Seisser B, Kroutil W (2010) Synthesis of optically active amines employing recombinant omega-transaminases in E. coli Cells. ChemCatChem 2(1):73–77

    CAS  Google Scholar 

  158. Koszelevski D, Lavandera I, Clay D, Guebitz GM, Rozzell D, Kroutil W (2008) Formal asymmetric biocatalytic reductive amination. Angew Chem Int Ed 47(48):9337–9340. doi:10.1002/anie.200803763

    Google Scholar 

  159. Desai AA (2010) Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew Chem Int Ed 50(9):1974–1976. doi:10.1002/anie.201007051

    Google Scholar 

  160. Tauber K, Fuchs M, Sattler JH, Pitzer J, Pressnitz D, Koszelewski D, Faber K, Pfeffer J, Haas T, Kroutil W (2013) Artificial multi-enzyme networks for the asymmetric amination of sec-alcohols. Chemistry A 19(12):4030–4035. doi:10.1002/chem.201202666

    CAS  Google Scholar 

  161. Warburg O, Christian W (1936) Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide). Biochem Z 287:291

    CAS  Google Scholar 

  162. Warburg O, Christian W (1933) The yellow oxidation enzyme. Biochem Z 263:228–229

    CAS  Google Scholar 

  163. Stürmer R, Hauer B, Hall M, Faber K (2007) Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 11(2):203–213

    Google Scholar 

  164. Toogood HS, Scrutton NS (2014) New developments in ‘ene’-reductase catalysed biological hydrogenations. Curr Opin Chem Biol 19:107–115. doi:10.1016/j.cbpa.2014.01.019

    CAS  Google Scholar 

  165. Toogood HS, Gardiner JM, Scrutton NS (2010) Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. ChemCatChem 2(8):892–914

    CAS  Google Scholar 

  166. Simon A, Karl U (2010) Expanding the scope of industrial biocatalysis. Speciality Chemicals Magazine, January 36–38. http://edition.pagesuite-professional.co.uk/launch.aspx?referral=other&pnum=&refresh=n05WN9c12g0Z&EID=3659fd0a-a685-4052-b446-ff1e8e631d89&skip=true

  167. Litthauer S, van Heerden E, Opperman DJ, Gargiulo S, Hollmann F (2014) Heterologous expression and characterization of the Ene-reductases from Deinococcus radiodurans and Ralstonia metallidurans. J Mol Catal B 99:89–95. doi:10.1016/j.molcatb.2013.10.020

    CAS  Google Scholar 

  168. Toogood HS, Scrutton NS (2013) Enzyme engineering toolbox—a ‘catalyst’ for change. Catal Sci Technol 3(9):2182–2194. doi:10.1039/c3cy00202k

    CAS  Google Scholar 

  169. Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190(8):3076–3082. doi:10.1128/jb.01766-07

    CAS  Google Scholar 

  170. Hall M, Stückler C, Hauer B, Stürmer R, Friedrich T, Breuer M, Kroutil W, Faber K (2008) Asymmetric bioreduction of activated C=C bonds using Zymomonas mobilis NCR enoate reductase and old yellow enzymes OYE 1-3 from yeasts. Eur J Org Chem 9:1511–1516

    Google Scholar 

  171. Hall M, Stückler C, Ehammer H, Pointner E, Oberdorfer G, Gruber K, Hauer B, Stürmer R, Kroutil W, Macheroux P, Faber K (2008) Asymmetric bioreduction of C=C bonds using enoate reductases OPR1, OPR3 and YqjM: enzyme-based stereocontrol. Adv Synth Catal 350(3):411–418

    CAS  Google Scholar 

  172. Chaparro-Riggers Javier F, Rogers Thomas A, Vazquez-Figueroa E, Polizzi KM, Bommarius AS (2007) Comparison of three enoate reductases and their potential use for biotransformations. Adv Synth Catal 349(8–9):1521–1531

    Google Scholar 

  173. Swiderska MA, Stewart JD (2006) Stereoselective enone reductions by Saccharomyces carlsbergensis old yellow enzyme. J Mol Catal B Enzym 42(1–2):52–54

    CAS  Google Scholar 

  174. Griese JJ, Jakob RP, Schwarzinger S, Dobbek H (2006) Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. J Mol Biol 361(1):140–152. doi:10.1016/j.jmb.2006.06.007

    CAS  Google Scholar 

  175. Messiha HL, Munro AW, Bruce NC, Barsukov I, Scrutton NS (2005) Reaction of morphinone reductase with 2-cyclohexen-1-one and 1-nitrocyclohexene. J Biol Chem 280(11):10695–10709. doi:10.1074/jbc.M410595200

    CAS  Google Scholar 

  176. Kataoka M, Kotaka A, Thiwthong R, Wada M, Nakamori S, Shimizu S (2004) Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound. J Biotechnol 114(1–2):1–9. doi:10.1016/j.jbiotec.2004.04.033

    CAS  Google Scholar 

  177. Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278(22):19891–19897. doi:10.1074/jbc.M211778200

    CAS  Google Scholar 

  178. Williams RE, Bruce NC (2002) ‘New uses for an old enzyme’—the old yellow enzyme family of flavoenzymes. Microbiology 148(6):1607–1614

    CAS  Google Scholar 

  179. Kataoka M, Kotaka A, Hasegawa A, Wada M, Yoshizumi A, Nakamori S, Shimizu S (2002) Old yellow enzyme from Candida macedoniensis catalyzes the stereospecific reduction of the C=C bond of ketoisophorone. Biosci Biotechnol Biochem 66(12):2651–2657

    CAS  Google Scholar 

  180. Rohdich F, Wiese A, Feicht R, Simon H, Bacher A (2001) Enoate reductases of clostridia—cloning, sequencing, and expression. J Biol Chem 276(8):5779–5787

    CAS  Google Scholar 

  181. Mifsud M, Gargiulo S, Iborra S, Arends IWCE, Hollmann F, Corma A (2014) Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat Commun. doi:10.1038/ncomms4145

    Google Scholar 

  182. Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernandez V, Gotor V, Taglieber A, Arends IWCE, Hollmann F (2013) Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett 15(1):180–183

    CAS  Google Scholar 

  183. Bernard J, Van Heerden E, Arends IWCE, Opperman DJ, Hollmann F (2012) Chemoenzymatic reduction of conjugated C=C-bonds. ChemCatChem 4(2):196–199

    CAS  Google Scholar 

  184. Mifsud Grau M, van der Toorn JC, Otten LG, Macheroux P, Taglieber A, Zilly FE, Arends IWCE, Hollmann F (2009) Photoenzymatic reduction of C=C double bonds. Adv Synth Catal 351(18):3279–3286

    Google Scholar 

  185. Toogood HS, Knaus T, Scrutton NS (2013) Alternative hydride sources for Ene-reductases: current trends. ChemCatChem 6:951–954. doi:10.1002/cctc.201300911

    Google Scholar 

  186. Napora-Wijata K, Strohmeier GA, Winkler M (2014) Biocatalytic reduction of carboxylic acids. Biotechnol J 9(6):822–843. doi:10.1002/biot.201400012

    CAS  Google Scholar 

  187. Napora-Wijata K, Robins K, Osorio-Lozada A, Winkler M (2014) Whole-cell carboxylate reduction for the synthesis of 3-hydroxytyrosol. ChemCatChem 6(4):1089–1095. doi:10.1002/cctc.201300913

    CAS  Google Scholar 

  188. Ni Y, Hagedoorn P-L, Xu J-H, Arends IWCE, Hollmann F (2014) Pyrococcus furiosus-mediated reduction of conjugated carboxylic acids: towards using syngas as reductant. J Mol Catal B 103:52–55. doi:10.1016/j.molcatb.2013.09.006

    CAS  Google Scholar 

  189. Ni Y, Hagedoorn P-L, Xu J-H, Arends IWCE, Hollmann F (2012) A biocatalytic hydrogenation of carboxylic acids. Chem Comm 48(99):12056–12058

    CAS  Google Scholar 

  190. van den Ban ECD, Willemen HM, Wassink H, Laane C, Haaker H (1999) Bioreduction of carboxylic acids by Pyrococcus furiosus in batch cultures. Enz Microb Technol 25(3–5):251–257

    Google Scholar 

  191. Venkitasubramanian P, Daniels L, Das S, Lamm AS, Rosazza JPN (2008) Aldehyde oxidoreductase as a biocatalyst: reductions of vanillic acid. Enz Microb Technol 42(2):130–137

    CAS  Google Scholar 

  192. Venkitasubramanian P, Daniels L, Rosazza JPN (2007) Biocatalytic reduction of carboxylic acids. In: Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. CRC Press, Boca Raton

  193. Venkitasubramanian P, Daniels L, Rosazza JPN (2007) Reduction of carboxylic acids by nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme. J Biol Chem 282(1):478–485. doi:10.1074/jbc.M607980200

    CAS  Google Scholar 

  194. He A, Li T, Daniels L, Fotheringham I, Rosazza JPN (2004) Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family. Appl Environ Microbiol 70(3):1874–1881. doi:10.1128/aem.70.3.1874-1881.2004

    CAS  Google Scholar 

  195. Chen YJ, Rosazza JPN (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60(4):1292–1296

    CAS  Google Scholar 

  196. Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110(1):87–92. doi:10.1073/pnas.1216516110

    CAS  Google Scholar 

  197. Wilding B, Winkler M, Petschacher B, Kratzer R, Egger S, Steinkellner G, Lyskowski A, Nidetzky B, Gruber K, Klempier N (2013) Targeting the substrate binding site of E. coli nitrile reductase QueF by modeling, substrate and enzyme engineering. Chemistry. doi:10.1002/chem.201300163

    Google Scholar 

  198. Moeller K, Nguyen G-S, Hollmann F, Hanefeld U (2013) Expression and characterization of the nitrile reductase queF from E. coli. Enz Microb Technol 52:129–133. doi:10.1016/j.enzmictec.2012.12.003

    CAS  Google Scholar 

  199. Wilding B, Winkler M, Petschacher B, Kratzer R, Glieder A, Klempier N (2012) Nitrile reductase from Geobacillus kaustophilus: a potential catalyst for a new nitrile biotransformation reaction. Adv Synth Catal 354(11–12):2191–2198. doi:10.1002/adsc.201200109

    CAS  Google Scholar 

  200. Domínguez deMaría P (2011) Nitrile reductases: a forthcoming wave in biocatalysis? ChemCatChem. doi:10.1002/cctc.201100220

    Google Scholar 

  201. Kung JW, Baumann S, von Bergen M, Muller M, Hagedoorn P-L, Hagen WR, Boll M (2010) Reversible biological birch reduction at an extremely low redox potential. J Am Chem Soc 132(28):9850–9856. doi:10.1021/ja103448u

    CAS  Google Scholar 

  202. Bizerra AMC, de Gonzalo G, Lavandera I, Gotor-Fernandez V, de Mattos MC, de Oliveira MDF, Lemos TLG, Gotor V (2010) Reduction processes biocatalyzed by Vigna unguiculata. Tetrahedron Asymm 21(5):566–570. doi:10.1016/j.tetasy.2010.03.005

    CAS  Google Scholar 

  203. Andrade LH, Utsunomiya RS, Omori AT, Porto MAL, Comasseto JV (2006) Edible catalysts for clean chemical reactions: bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants. J Mol Catal B 38(2):84–90

    CAS  Google Scholar 

  204. Roldan M, Perez-Reinado E, Castillo F, Moreno-Vivian C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32(3):474–500. doi:10.1111/j.1574-6976.2008.00107.x

    CAS  Google Scholar 

  205. Yanto Y, Hall M, Bommarius AS (2010) Nitroreductase from Salmonella typhimurium: characterization and catalytic activity. Org Biomol Chem 8(8):1826–1832. doi:10.1039/b926274a

    CAS  Google Scholar 

  206. Durchschein K, Ferreira-da Silva B, Wallner S, Macheroux P, Kroutil W, Glueck SM, Faber K (2010) The flavoprotein-catalyzed reduction of aliphatic nitro-compounds represents a biocatalytic equivalent to the Nef-reaction. Green Chem 12:616–619

    CAS  Google Scholar 

  207. Kamal A, Damayanthi Y, Reddy BSN, Lakminarayana B, Reddy BSP (1997) Novel biocatalytic reduction of aryl azides: chemoenzymatic synthesis of pyrrolo[2,1-c][1,4]benzodiazepine antibiotics. Chem Comm 11:1015–1016

    Google Scholar 

  208. Bozic M, Pricelius S, Guebitz GM, Kokol V (2010) Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactor regeneration. Appl Microbiol Biotechnol 85(3):563–571. doi:10.1007/s00253-009-2164-8

    CAS  Google Scholar 

  209. Bozic M, Kokol V, Guebitz GM (2009) Indigo dyeing of polyamide using enzymes for dye reduction. Textile Res J 79(10):895–907. doi:10.1177/0040517508097514

    CAS  Google Scholar 

  210. Pricelius S, Held C, Murkovic M, Bozic M, Kokol V, Cavaco-Paulo A, Guebitz GM (2007) Enzymatic reduction of azo and indigoid compounds. Appl Microbiol Biotechnol 77(2):321–327. doi:10.1007/s00253-007-1165-8

    CAS  Google Scholar 

  211. Hollmann F, Arends IWCE, Buehler K, Schallmey A, Buhler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13:226–265

    CAS  Google Scholar 

  212. Fossati E, Polentini F, Carrea G, Riva S (2006) Exploitation of the alcohol dehydrogenase-acetone NADP-regeneration system for the enzymatic preparative-scale production of 12-ketochenodeoxycholic acid. Biotechnol Bioeng 93(6):1216–1220. doi:10.1002/bit.20753

    CAS  Google Scholar 

  213. Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10(11):2155–2158

    CAS  Google Scholar 

  214. Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Cofactor regeneration of NAD+ from NADH: novel water-forming NADH oxidases. Adv Synth Catal 344(10):1156–1168

    CAS  Google Scholar 

  215. Riebel B, Gibbs P, Wellborn W, Bommarius A (2003) Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH oxidase from Lactobacillus sanfranciscensis. Adv Synth Catal 345(6–7):707–712

    CAS  Google Scholar 

  216. Hirano J-I, Miyamoto K, Ohta H (2008) The green and effective oxidation of alcohols to carboxylic acids with molecular oxygen via biocatalytic reaction. Tetraherdon Lett 49(7):1217–1219

    CAS  Google Scholar 

  217. Jiang R, Bommarius AS (2004) Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis. Tetrahedron Asymm 15(18):2939–2944. doi:10.1016/j.tetasy.2004.07.057

    CAS  Google Scholar 

  218. Aksu S, Arends IWCE, Hollmann F (2009) A new regeneration system for oxidized nicotinamide cofactors. Adv Synth Catal 351(9):1211–1216

    CAS  Google Scholar 

  219. Ferrandi EE, Monti D, Patel I, Kittl R, Haltrich D, Riva S, Ludwig R (2012) Exploitation of a laccase/meldola’s blue system for NAD+ regeneration in preparative scale hydroxysteroid dehydrogenase-catalyzed oxidations. Adv Synth Catal 354(14–15):2821–2828. doi:10.1002/adsc.201200429

    CAS  Google Scholar 

  220. Könst P, Kara S, Kochius S, Holtmann D, Arends IWCE, Ludwig R, Hollmann F (2013) Expanding the scope of laccase-mediator systems. ChemCatChem 5(10):3027–3032. doi:10.1002/cctc.201300205

    Google Scholar 

  221. Kedziora K, Diaz-Rodriguez A, Lavandera I, Gotor-Fernandez V, Gotor V (2014) Laccase/TEMPO-mediated system for the thermodynamically disfavored oxidation of 2,2-dihalo-1-phenylethanol derivatives. Green Chem 16(5):2448–2453. doi:10.1039/c4gc00066h

    CAS  Google Scholar 

  222. Kara S, Spickermann D, Schrittwieser JH, Weckbecker A, Leggewie C, Arends IWCE, Hollmann F (2013) Access to lactone building blocks via horse liver alcohol dehydrogenase-catalyzed oxidative lactonization. ACS Catalysis 3:2436–2439. doi:10.1021/cs400535c

    CAS  Google Scholar 

  223. Jones JB, Taylor KE (1973) Use of pyridinium and flavin derivatives for recycling of catalystic amounts of NAD+ during preparative-scale horse liver alchohol dehydrogenase-catalysed oxidations of alcohols. J Chem Soc Chem Commun 205–206

  224. Boratynski F, Kielbowicz G, Wawrzenczyk C (2010) Lactones 34 [1]. Application of alcohol dehydrogenase from horse liver (HLADH) in enantioselective synthesis of [delta]- and [var epsilon]-lactones. J Mol Catal B 65(1–4):30–36

  225. Hilt G, Steckhan E (1993) Transition metal complexes of 1,10-phenanthroline-5,6-dione as efficient mediators for the regeneration of NAD+ in enzymatic synthesis. J Chem Soc Chem Commun 1706–1707

  226. Hilt G, Jarbawi T, Heineman WR, Steckhan E (1997) An analytical study of the redox behavior of 1,10-phenanthroline-5,6-dione, its transition-metal complexes, and its N-monomethylated derivative with regard to their efficiency as mediators of NAD(P)+-regeneration. Chem Eur J 3(1):79–88

    CAS  Google Scholar 

  227. Hilt G, Lewall B, Montero G, Utley JHP, Steckhan E (1997) Efficient in situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione in its N-monomethylated derivate as catalysts. Liebigs Ann/Rec 2289–2296

  228. Gargiulo S, Arends IWCE, Hollmann F (2011) A photoenzymatic system for alcohol oxidation. ChemCatChem 3(2):338–342. doi:10.1002/cctc.201000317

    CAS  Google Scholar 

  229. Biade AE, Bourdillon C, Laval JM, Mairesse G, Moiroux J (1992) Complete conversion of l-lactate into d-lactate. A generic approach involving enzymic catalysis, electrochemical oxidation of NADH and electrochemical reduction of pyruvate. J Am Chem Soc 114(3):893–897

    CAS  Google Scholar 

  230. Schröder I, Steckhan E, Liese A (2003) In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 541:109–115

    Google Scholar 

  231. Kochius S, Park JB, Ley C, Könst P, Hollmann F, Schrader J, Holtmann D (2014) Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B 103:94–99. doi:10.1016/j.molcatb.2013.07.006

    CAS  Google Scholar 

  232. Kochius S, Magnusson A, Hollmann F, Schrader J, Holtmann D (2012) Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol 93(6):2251–2264. doi:10.1007/s00253-012-3900-z

    CAS  Google Scholar 

  233. Ewing TA, Dijkman WP, Vervoort JM, Fraaije MW, van Berkel WJH (2014) The oxidation of thiols by flavoprotein oxidases: a biocatalytic route to reactive thiocarbonyls. Angew Chem Int Ed. doi:10.1002/anie.201407520

    Google Scholar 

  234. Dijkman W, Gonzalo G, Mattevi A, Fraaije M (2013) Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 97(12):5177–5188. doi:10.1007/s00253-013-4925-7

    CAS  Google Scholar 

  235. Winter RT, van den Berg TE, Colpa DI, van Bloois E, Fraaije MW (2012) Functionalization of oxidases with peroxidase activity creates oxiperoxidases: a new breed of hybrid enzyme capable of cascade chemistry. ChemBioChem 13(2):252–258. doi:10.1002/cbic.201100639

    CAS  Google Scholar 

  236. Winter TR, Fraaije WM (2012) Applications of flavoprotein oxidases in organic synthesis: novel reactivities that go beyond amine and alcohol oxidations. Curr Org Chem 16(21):2542–2550. doi:10.2174/138527212804004661

    CAS  Google Scholar 

  237. van Hellemond EW, Vermote L, Koolen W, Sonke T, Zandvoort E, Heuts DP, Janssen DB, Fraaije MW (2009) Exploring the biocatalytic scope of alditol oxidase from Streptomyces coelicolor. Adv Synth Catal 351(10):1523–1530

    Google Scholar 

  238. Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474(2):292–301

    CAS  Google Scholar 

  239. van den Heuvel RHH, Fraaije MW, Mattevi A, Laane C, van Berkel WJH (2001) Vanillyl-alcohol oxidase, a tasteful biocatalyst. J Mol Catal B Enzym 11(4–6):185–188

    Google Scholar 

  240. Escalettes F, Turner NJ (2008) Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases. ChemBioChem 9(6):857–860

    CAS  Google Scholar 

  241. Buhler B, Schmid A, Hauer B, Witholt B (2000) Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem 275(14):10085–10092

    CAS  Google Scholar 

  242. Buhler B, Witholt B, Hauer B, Schmid A (2002) Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl Environ Microbiol 68(2):560–568

    CAS  Google Scholar 

  243. Buhler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81(6):683–694. doi:10.1002/bit.10512

    CAS  Google Scholar 

  244. Buhler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 82(7):833–842. doi:10.1002/bit.10637

    CAS  Google Scholar 

  245. Buhler B, Schmid A (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 113(1–3):183–210

    Google Scholar 

  246. Molinari F, Aragozzini F, Cabral JMS, Prazeres DMF (1997) Continuous production of isovaleraldehyde through extractive bioconversion in a hollow-fiber membrane bioreactor. Enz Microb Technol 20(8):604–611

    CAS  Google Scholar 

  247. Molinari F, Villa R, Aragozzini F, Cabella P, Barbeni M, Squarcia F (1997) Multigram-scale production of aliphatic carboxylic acids by oxidation of alcohols with Acetobacter pasteurianus NCIMB 11664. J Chem Technol Biotechnol 70(3):294–298

    CAS  Google Scholar 

  248. Molinari F, Gandolfi R, Aragozzini F, Leon R, Prazeres DMF (1999) Biotransformations in two-liquid-phase systems: production of phenylacetaldehyde by oxidation of 2-phenylethanol with acetic acid bacteria. Enz Microb Technol 25(8–9):729–735

    CAS  Google Scholar 

  249. Gandolfi R, Ferrara N, Molinari F (2001) An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Lett 42(3):513–514

    CAS  Google Scholar 

  250. Jakovac IJ, Goodbrand HB, Lok KP, Jones JB (1982) Enzymes in organic synthesis. 24. Preparations of enantiomerically pure chiral lactones via stereospecific horse liver alcohol dehydrogenase catalyzed oxidations of monocyclic meso diols. J Am Chem Soc 104(17):4659–4665

    CAS  Google Scholar 

  251. Lok KP, Jakovac IJ, Jones JB (1985) Enzymes in organic synthesis. 34. Preparations of enantiomerically pure exo- and endo-bridged bicyclic [2.2.1] and [2.2.2] chiral lactones via stereospecific horse liver alcohol dehydrogenase catalyzed oxidations of meso diols. J Am Chem Soc 107(8):2521–2526

    CAS  Google Scholar 

  252. Bridges AJ, Raman PS, Ng GSY, Jones JB (1984) Enzymes in organic synthesis. 31. Preparations of enantiomerically pure bicyclic [3.2.1] and [3.3.1] chiral lactones via stereospecific horse liver alcohol dehydrogenase catalyzed oxidations of meso diols. J Am Chem Soc 106(5):1461–1467

    CAS  Google Scholar 

  253. Irwin AJ, Jones JB (1977) Asymmetric syntheses via enantiotopically selective horse liver alcohol dehydrogenase catalyzed oxidations of diols containing a prochiral center. J Am Chem Soc 99(2):556–561

    CAS  Google Scholar 

  254. Matos JR, Wong CH (1986) Biphasic one-pot synthesis of 2 useful and separable compounds using cofactor-requiring enzymatic-reactions—glutamate–dehydrogenase catalyzed synthesis of l-alpha-aminoadipate coupled with alcohol-dehydrogenase catalyzed synthesis of a chiral lactone. J Org Chem 51(12):2388–2389

    CAS  Google Scholar 

  255. Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K (2002) Biocatalytic asymmetric hydrogen transfer. Angew Chem Int Ed 41(6):1014–1017

    CAS  Google Scholar 

  256. Degenring D, Schroder I, Wandrey C, Liese A, Greiner L (2004) Resolution of 1,2-diols by enzyme-catalyzed oxidation with anodic, mediated cofactor regeneration in the extractive membrane reactor: gaining insight by adaptive simulation. Org Proc Res Dev 8(2):213–218. doi:10.1021/op034122y

    CAS  Google Scholar 

  257. Fogagnolo M, Giovannini PP, Guerrini A, Medici A, Pedrini P, Colombi N (1998) Homochiral (R)- and (S)-1-heteroaryl- and 1-aryl-2-propanols via microbial redox. Tetrahedron Asymm 9(13):2317–2327

    CAS  Google Scholar 

  258. Ramirez MA, Perez HI, Manjarrez N, Solis A, Luna H, Cassani J (2008) Biocatalytic oxidative kinetic resolution of (±)4-(chlorophenyl)phenylmethanol by Nocardia corallina B-276. Electron J Biotechnol 11(4):7. doi:10.2225/vol11-issue4-fulltext-3

    Google Scholar 

  259. Stigter ECA, van der Lugt JP, Somers WAC (1997) Enantioselective oxidation of secondary alcohols by quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni. J Mol Catal B 2(6):291–297

    CAS  Google Scholar 

  260. Jongejan A, Machado SS, Jongejan JA (2000) The enantioselectivity of quinohaemoprotein alcohol dehydrogenases: mechanistic and structural aspects. J Mol Catal B 8(1–3):121–163

    CAS  Google Scholar 

  261. Matsuyama A, Yamamoto H, Kawada N, Kobayashi Y (2001) Industrial production of (R)-1,3-butanediol by new biocatalysts. J Mol Catal B 11(4–6):513–521

    CAS  Google Scholar 

  262. de Carvalho CCCR, da Fonseca MMR (2002) Maintenance of cell viability in the biotransformation of (−)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B 19–20:389–398

    Google Scholar 

  263. de Carvalho CCCR, da Fonseca MMR (2002) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B 19–20:377–387

    Google Scholar 

  264. Tecelão CSR, van Keulen F, da Fonseca MMR (2001) Development of a reaction system for the selective conversion of (−)-trans-carveol to (−)-carvone with whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B 11(4–6):719–724

    Google Scholar 

  265. Tsuji Y, Fukui T, Kawamoto T, Tanaka A (1994) Enantioselective dehydrogenation of β-hydroxysilanes by horse liver alcohol dehydrogenase with a novel in situ NAD+ regeneration system. Appl Microbiol Biotechnol 41(2):219–224

    CAS  Google Scholar 

  266. Adam W, Lazarus M, Boss B, Saha-Moller CR, Humpf H-U, Schreier P (1997) Enzymatic resolution of chiral 2-hydroxy carboxylic acids by enantioselective oxidation with molecular oxygen catalyzed by the glycolate oxidase from spinach (Spinacia oleracea). J Org Chem 62(22):7841–7843

    CAS  Google Scholar 

  267. Padhi SK, Pandian NG, Chadha A (2004) Microbial deracemisation of aromatic [beta]-hydroxy acid esters. J Mol Catal B 29(1–6):25–29

    CAS  Google Scholar 

  268. Padhi SK, Chadha A (2005) Deracemisation of aromatic [beta]-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330 and determination of absolute configuration by 1H NMR. Tetrahedron Asymm 16(16):2790–2798

    CAS  Google Scholar 

  269. Padhi SK, Titu D, Pandian NG, Chadha A (2006) Deracemisation of [beta]-hydroxy esters using immobilised whole cells of Candida parapsilosis ATCC 7330: substrate specificity and mechanistic investigation. Tetrahedron 62(21):5133–5140

    CAS  Google Scholar 

  270. Takahashi E, Nakamichi K, Furui M (1995) R-(−)-mandelic acid production from racemic mandelic acids using Pseudomonas polycolor IFO 3918 and Micrococcus freudenreichii FERM-P 13221. J Ferment Bioeng 80(3):247–250

    CAS  Google Scholar 

  271. Tsuchiya S, Miyamoto K, Ohta H (1992) Highly efficient conversion of (±)-mandelic acid to its (R)-(−)-enantiomer by combination of enzyme-mediated oxidation and reduction. Biotechnol Lett 14(12):1137–1142

    CAS  Google Scholar 

  272. Adam W, Lazarus M, Saha-Möller CR, Schreier P (1998) Quantitative transformation of racemic 2-hydroxy acids into (R)-2-hydroxy acids by enantioselective oxidation with glycolate oxidase and subsequent reduction of 2-keto acids with d-lactate dehydrogenase. Tetrahedron Asymm 9(2):351–355

    CAS  Google Scholar 

  273. Tanaka T, Iwai N, Matsuda T, Kitazume T (2009) Utility of ionic liquid for Geotrichum candidum-catalyzed synthesis of optically active alcohols. J Mol Catal B 57(1–4):317–320

    CAS  Google Scholar 

  274. Oikawa T, Mukoyama S, Soda K (2001) Chemo-enzymatic d-enantiomerization of dl-lactate. Biotechnol Bioeng 73(1):80–82

    CAS  Google Scholar 

  275. Nie Y, Xu Y, Mu XQ (2004) Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011. Org Process Res Dev 8(2):246–251. doi:10.1021/op0341519

    CAS  Google Scholar 

  276. Hasegawa J, Ogura M, Tsuda S, Maemoto S-I, Kutsuki H, Ohashi T (1990) High-yield production of optically active 1, 2-diols from the corresponding racemates by microbial stereoinversion. Agri Biol Chem 54(7):1819–1827

    CAS  Google Scholar 

  277. Titu D, Chadha A (2008) Enantiomerically pure allylic alcohols: preparation by Candida parapsilosis ATCC 7330 mediated deracemisation. Tetrahedron Asymm 19(14):1698–1701

    CAS  Google Scholar 

  278. Shimizu S, Hattori S, Hata H, Yamada H (1987) One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active d-(–)-pantoyl lactone. Appl Environ Microbiol 53(3):519–522

    CAS  Google Scholar 

  279. Chadha A, Baskar B (2002) Biocatalytic deracemisation of [alpha]-hydroxy esters: high yield preparation of (S)-ethyl 2-hydroxy-4-phenylbutanoate from the racemate. Tetrahedron Asymm 13(14):1461–1464

    CAS  Google Scholar 

  280. Baskar B, Pandian NG, Priya K, Chadha A (2005) Deracemisation of aryl substituted [alpha]-hydroxy esters using Candida parapsilosis ATCC 7330: effect of substrate structure and mechanism. Tetrahedron 61(52):12296–12306

    CAS  Google Scholar 

  281. Demir AS, Hamamci H, Sesenoglu O, Neslihanoglu R, Asikoglu B, Capanoglu D (2002) Fungal deracemization of benzoin. Tetraherdon Lett 43(36):6447–6449

    CAS  Google Scholar 

  282. Comasseto JV, Andrade LH, Omori ÁT, Assis LF, Porto ALM (2004) Deracemization of aryl ethanols and reduction of acetophenones by whole fungal cells of Aspergillus terreus CCT 4083, A. terreus CCT 3320 and Rhizopus oryzae CCT 4964. J Mol Catal B 29 (1–6):55–61

  283. Cardus GJ, Carnell AJ, Trauthwein H, Riermeir T (2004) Microbial deracemisation of N-(1-hydroxy-1-phenylethyl)benzamide. Tetrahedron Asymm 15(2):239–243

    CAS  Google Scholar 

  284. Voss CV, Gruber CC, Kroutil W (2008) Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction. Angew Chem Int Ed 47(4):741–745

    CAS  Google Scholar 

  285. Voss CV, Gruber CC, Faber K, Knaus T, Macheroux P, Kroutil W (2008) Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols. J Am Chem Soc 130(42):13969–13972. doi:10.1021/ja804816a

    CAS  Google Scholar 

  286. Abeles RH, Lee HA (1960) The dismutation of formaldehyde by liver alcohol dehydrogenase. J Biol Chem 235(5):1499–1503

    CAS  Google Scholar 

  287. Dalziel K, Dickinso FM (1965) Aldehyde mutase. Nature 206(4981):255. doi:10.1038/206255a0

    CAS  Google Scholar 

  288. Lamed RJ, Zeikus JG (1981) Novel NADP-linked alcohol–aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J 195(1):183–190

    CAS  Google Scholar 

  289. Olson LP, Luo J, Almarsson O, Bruice TC (1996) Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase. Biochemistry 35(30):9782–9791

    CAS  Google Scholar 

  290. Höllrigl V, Hollmann F, Kleeb A, Buehler K, Schmid A (2008) TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Appl Microbiol Biotechnol 81(2):263–273

    Google Scholar 

  291. Wuensch C, Lechner H, Glueck SM, Zangger K, Hall M, Faber K (2013) Asymmetric biocatalytic cannizzaro-type reaction. ChemCatChem 5(7):1744–1748. doi:10.1002/cctc.201300028

    CAS  Google Scholar 

  292. Könst P, Merkens H, Kara S, Kochius S, Vogel A, Zuhse R, Holtmann D, Arends IWCE, Hollmann F (2012) Oxidation von Aldehyden mit Alkoholdehydrogenasen. Angew Chem Int Ed 51:9914–9917. doi:10.1002/ange.201203219

    Google Scholar 

  293. Turner NJ (2011) Enantioselective oxidation of C–O and C–N bonds using oxidases. Chem Rev 111(7):4073–4087. doi:10.1021/cr200111v

    CAS  Google Scholar 

  294. Kohler V, Bailey KR, Znabet A, Raftery J, Helliwell M, Turner NJ (2010) Enantioselective biocatalytic oxidative desymmetrization of substituted pyrrolidines. Angew Chem Int Ed 49(12):2182–2184. doi:10.1002/anie.200906655

    Google Scholar 

  295. Atkin KE, Reiss R, Koehler V, Bailey KR, Hart S, Turkenburg JP, Turner NJ, Brzozowski AM, Grogan G (2008) The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution. J Mol Biol 384(5):1218–1231. doi:10.1016/j.jmb.2008.09.090

    CAS  Google Scholar 

  296. Dunsmore CJ, Carr R, Fleming T, Turner NJ (2006) A chemo-enzymatic route to enantiomerically pure cyclic tertiary amines. J Am Chem Soc 128(7):2224–2225. doi:10.1021/ja058536d

    CAS  Google Scholar 

  297. Enright A, Alexandre F-R, Roff G, Fotheringham IG, Dawson MJ, Turner NJ (2003) Stereoinversion of—and -substituted—amino acids using a chemo-enzymatic oxidation–reduction procedure. Chem Comm 2636–2637

  298. Carr R, Alexeeva M, Enright A, Eve TSC, Dawson MJ, Turner NJ (2003) Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Angew Chem Int Ed 42(39):4807–4810

    CAS  Google Scholar 

  299. Turner NJ (2010) Deracemisation methods. Curr Opin Chem Biol 14(2):115–121

    CAS  Google Scholar 

  300. Truppo MD, Turner NJ, Rozzell JD (2009) Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chem Comm 16:2127–2129. doi:10.1039/b902995h

    Google Scholar 

  301. Koszelewski D, Clay D, Rozzell D, Kroutil W (2009) Deracemisation of alpha-chiral primary amines by a one-pot, two-step cascade reaction catalysed by omega-transaminases. Eur J Org Chem 14:2289–2292

    Google Scholar 

  302. Kieslich K (1980) Industrial-aspects of biotechnological production of steroids. Biotechnol Lett 2(5):211–217. doi:10.1007/bf01209435

    CAS  Google Scholar 

  303. Hilker I, Gutierrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V (2008) Preparative scale Baeyer–Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process. Nat Protoc 3(3):546–554. doi:10.1038/nprot.2007.532

    CAS  Google Scholar 

  304. Berezina N, Kozma E, Furstoss R, Alphand V (2007) Asymmetric Baeyer–Villiger biooxidation of alpha-substituted cyanocyclohexanones: influence of the substituent length on regio- and enantioselectivity. Adv Synth Catal 349(11–12):2049–2053. doi:10.1002/adsc.200700150

    CAS  Google Scholar 

  305. Hilker I, Wohlgemuth R, Alphand V, Furstoss R (2005) Scale asymmetric microbial Baeyer–Villiger oxidation with optimized productivity using a resin-based in situ SFPR strategy. Biotechnol Bioeng 92(6):702–710. doi:10.1002/bit.20636

    CAS  Google Scholar 

  306. Mihovilovic MD, Muller B, Kayser MM, Stewart JD, Frohlich J, Stanetty P, Spreitzer H (2001) Baeyer–Villiger oxidations of representative heterocyclic ketones by whole cells of engineered Escherichia coli expressing cyclohexanone monooxygenase. J Mol Catal B 11(4–6):349–353

    CAS  Google Scholar 

  307. Mihovilovic MD, Chen G, Wang S, Kyte B, Rochon F, Kayser MM, Stewart JD (2001) Asymmetric Baeyer–Villiger oxidations of 4-mono- and 4,4-disubstituted cyclohexanones by whole cells of engineered Escherichia coli. J Org Chem 66(3):733–738

    CAS  Google Scholar 

  308. Stewart JD, Reed KW, Martinez CA, Zhu J, Chen G, Kayser MM (1998) Recombinant baker’s yeast as a whole-cell catalyst for asymmetric Baeyer–Villiger oxidations. J Am Chem Soc 120(15):3541–3548

    CAS  Google Scholar 

  309. Stewart JD (1998) Cyclohexanone monooxygenase: a useful reagent for asymmetric Baeyer–Villiger reactions. Curr Org Chem 2(3):195–216

    CAS  Google Scholar 

  310. Oberleitner N, Peters C, Muschiol J, Kadow M, Sass S, Bayer T, Schaaf P, Iqbal N, Rudroff F, Mihovilovic MD, Bornscheuer UT (2013) An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis. ChemCatChem 5(12):3524–3528. doi:10.1002/cctc.201300604

    CAS  Google Scholar 

  311. Fink MJ, Rudroff F, Mihovilovic MD (2011) Baeyer–Villiger monooxygenases in aroma compound synthesis. Bioorg Med Chem Lett 21(20):6135–6138. doi:10.1016/j.bmcl.2011.08.025

    CAS  Google Scholar 

  312. Fink MJ, Fischer TC, Rudroff F, Dudek H, Fraaije MW, Mihovilovic MD (2011) Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer–Villiger biocatalyst reveals novel regiodivergent oxidations. J Mol Catal B 73(1–4):9–16

    CAS  Google Scholar 

  313. Rehdorf J, Mihovilovic MD, Bornscheuer UT (2010) Exploiting the regioselectivity of Baeyer–Villiger monooxygenases for the formation of beta-amino acids and beta-amino alcohols. Angew Chem Int Ed 49(26):4506–4508. doi:10.1002/anie.201000511

    CAS  Google Scholar 

  314. Rehdorf J, Lengar A, Bornscheuer UT, Mihovilovic MD (2009) Kinetic resolution of aliphatic acyclic beta-hydroxyketones by recombinant whole-cell Baeyer–Villiger monooxygenases-formation of enantiocomplementary regioisomeric esters. Bioorg Med Chem Lett 19(14):3739–3743. doi:10.1016/j.bmcl.2009.05.014

    CAS  Google Scholar 

  315. Torres Pazmiño DE, Snajdrova R, Baas B-J, Ghobrial M, Mihovilovic MD, Fraaije MW (2008) Self-sufficient Baeyer–Villiger monooxygenases: effective coenzyme regeneration for biooxygenation by fusion engineering. Angew Chem Int Ed 47(12):2307–2310

    Google Scholar 

  316. Mihovilovic MD (2006) Enzyme mediated Baeyer–Villiger Oxidations. Curr Org Chem 10:1265–1287

    CAS  Google Scholar 

  317. Zhang Z-G, Roiban G-D, Acevedo JP, Polyak I, Reetz MT (2013) A new type of stereoselectivity in Baeyer–Villiger reactions: access to E- and Z-olefins. Adv Synth Catal 355(1):99–106. doi:10.1002/adsc.201200759

    CAS  Google Scholar 

  318. Zhang Z-G, Parra LP, Reetz MT (2012) Protein engineering of stereoselective Baeyer–Villiger monooxygenases. Chemistry A 18:10160–10172. doi:10.1002/chem.201202163

    CAS  Google Scholar 

  319. Opperman DJ, Reetz MT (2010) Towards practical Baeyer–Villiger–Monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability. ChemBioChem 11:2589–2596. doi:10.1002/cbic.201000464

    CAS  Google Scholar 

  320. Hollmann F, Taglieber A, Schulz F, Reetz MT (2007) A light-driven stereoselective biocatalytic oxidation. Angew Chem Int Ed 46(16):2903–2906

    CAS  Google Scholar 

  321. Clouthier CM, Kayser MM, Reetz MT (2006) Designing new Baeyer–Villiger monooxygenases using restricted casting. J Org Chem 71(22):8431–8437

    CAS  Google Scholar 

  322. Schulz F, Leca F, Hollmann F, Reetz MT (2005) Towards practical biocatalytic Baeyer–Villiger reactions: applying a thermostable enzyme in the gram- scale synthesis of optically-active lactones in a two-liquid-phase system. Beilstein J Org Chem 1(10). doi:10.1186/1860-5397-1181-1110

  323. Reetz MT, Daligault F, Brunner B, Hinrichs H, Deege A (2004) Directed evolution of cyclohexanone monooxygenases: enantioselective biocatalysts for the oxidation of prochiral thioethers. Angew Chem Int Ed 43(31):4078–4081

    CAS  Google Scholar 

  324. Reetz MT, Brunner B, Schneider T, Schulz F, Clouthier CM, Kayser MM (2004) Directed evolution as a method To create enantioselective cyclohexanone monooxygenases for catalysis in Baeyer–Villiger reactions. Angew Chem Int Ed 43(31):4075–4078

    CAS  Google Scholar 

  325. Alphand V, Wohlgemuth R (2011) Applications of Baeyer–Villiger monooxygenases in organic synthesis. Curr Org Chem 14(17):1928–1965

    Google Scholar 

  326. Bong YK, Clay D, Collier S, Mijts B, Vogel M, Zhang X, Zhu J, Nazor J, Smith D, Song S (2011) Synthesis of prazole compounds. PCT patent (by Codexis Inc.) WO2011071982

  327. Ang E, Clay MD, Behrouzian B, Eberhard E, Collier S, Fu FJ, Smith D, Song S, Alvizio O, Widegren M, Zhu J, Xu J, Wilson R (2012) Biocatalysts and methods for the synthesis of armodafinil. PCT patent (by Codexis Inc.) WO2012078800

  328. Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17(2):284–292. doi:10.1016/j.cbpa.2013.01.017

    CAS  Google Scholar 

  329. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345(4):425–435

    CAS  Google Scholar 

  330. Tinschert A, Tschech A, Heinzmann K, Kiener A (2000) Novel regioselective hydroxylations of pyridine carboxylic acids at position C2 and pyrazine carboxylic acids at position C3. Appl Microbiol Biotechnol 53(2):185–195

    CAS  Google Scholar 

  331. Petersen M, Kiener A (1999) Biocatalysis—preparation and functionalization of N-heterocycles. Green Chem 1(2):99–106. doi:10.1039/a809538h

    CAS  Google Scholar 

  332. Schorken U, Kempers P (2009) Lipid biotechnology: industrially relevant production processes. Eur J Lipid Sci Technol 111(7):627–645. doi:10.1002/ejlt.200900057

    Google Scholar 

  333. Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic-acids. Nat Biotechnol 10(8):894–898. doi:10.1038/nbt0892-894

    CAS  Google Scholar 

  334. Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and Alkanes to alpha, omega-dicarboxylic acids. Appl Environ Microbiol 69(10):5983–5991. doi:10.1128/aem.69.10.5983-5991.2003

    CAS  Google Scholar 

  335. Eirich LD, Craft DL, Steinberg L, Asif A, Eschenfeldt WH, Stols L, Donnelly MI, Wilson CR (2004) Cloning and characterization of three fatty alcohol oxidase genes from Candida tropicalis strain ATCC 20336. Appl Environ Microbiol 70(8):4872–4879. doi:10.1128/aem.70.8.4872-4879.2004

    CAS  Google Scholar 

  336. Hudlicky T, Gonzalez D, Gibson DT (1999) Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expanding asymmetric methodology. Aldrichimica Acta 32(2):35–62

    CAS  Google Scholar 

  337. Endoma MA, Bui VP, Hansen J, Hudlicky T (2002) Medium-scale preparation of useful metabolites of aromatic compounds via whole-cell fermentation with recombinant organisms. Org Process Res Dev 6(4):525–532. doi:10.1021/op020013s

    CAS  Google Scholar 

  338. Boyd DR, Sheldrake GN (1998) The dioxygenase-catalysed formation of vicinal cis-diols. Nat Prod Rep 15(3):309–324

    CAS  Google Scholar 

  339. Boyd DR, Sharma ND, Brannigan IN, Haughey SA, Malone JF, Clarke DA, Dalton H (1996) Dioxygenase-catalysed formation of cis/trans-dihydrodiol metabolites of mono- and bi-cyclic heteroarenes. Chem Comm 20:2361–2362

    Google Scholar 

  340. Trenz SP, Engesser KH, Fischer P, Knackmuss HJ (1994) Degradation of fluorene by Brevibacterium sp strain DPO-1361—a novel C–C bond-cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one. J Bacteriol 176(3):789–795

    CAS  Google Scholar 

  341. Hudlicky T, Endoma MAA, Butora G (1996) New chiral synthons from the microbial oxidation of bromonaphthalenes. Tetrahedron-Asymmetry 7(1):61–68

    CAS  Google Scholar 

  342. Jenkins GN, Ribbons DW, Widdowson DA, Slawin AMZ, Williams DJ (1995) Synthetic application of biotransformations—absolute stereochemistry and diels–alder reactions of the (1S,2R)-1,2-dihydroxycyclohexa-3,5-diene-1-carboxylic acid from Pseudomonas putida. J Chem Soc-Perkin Trans 1(20):2647–2655

    Google Scholar 

  343. Koreeda M, Akhtar MN, Boyd DR, Neill JD, Gibson DT, Jerina DM (1978) Absolute stereochemistry of cis-1,2-dihydrodiol, trans-1,2-dihydrodiol, and cis-3,4-dihydrodiol metabolites of phenanthrene. J Org Chem 43(6):1023–1027

    CAS  Google Scholar 

  344. Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp strain NCIB 9816. J Ind Microbiol Biotechnol 17(5–6):438–457

    CAS  Google Scholar 

  345. Resnick SM, Gibson DT (1996) Oxidation of 6,7-dihydro-5H-benzocycloheptene by bacterial strains expressing naphthalene dioxygenase, biphenyl dioxygenase, and toluene dioxygenase yields homochiral monol or cis-diol enantiomers as major products. Appl Environ Microbiol 62(4):1364–1368

    CAS  Google Scholar 

  346. Pešić M, López C, Álvaro G, López-Santín J (2012) A novel immobilized chloroperoxidase biocatalyst with improved stability for the oxidation of amino alcohols to amino aldehydes. J Mol Catal B 84:144–151. doi:10.1016/j.molcatb.2012.04.010

    Google Scholar 

  347. Li C, Wang L, Jiang Y, Hu M, Li S, Zhai Q (2011) Activity and stability of chloroperoxidase in the presence of small quantities of polysaccharides: a catalytically favorable conformation was induced. App Biochem Biotechnol 165(7):1691–1707. doi:10.1007/s12010-011-9388-7

    CAS  Google Scholar 

  348. Krieg T, Huttmann S, Mangold K-M, Schrader J, Holtmann D (2011) Gas diffusion electrode as novel reaction system for an electro-enzymatic process with chloroperoxidase. Green Chem 13:2686–2689

    CAS  Google Scholar 

  349. Águila S, Vazquez-Duhalt R, Covarrubias C, Pecchi G, Alderete JB (2011) Enhancing oxidation activity and stability of iso-1-cytochrome c and chloroperoxidase by immobilization in nanostructured supports. J Mol Catal B 70(3–4):81–87

    Google Scholar 

  350. Yazbik V, Ansorge-Schumacher M (2010) Fast and efficient purification of chloroperoxidase from C. fumago. Proc Biochem 45(2):279–283. doi:10.1016/j.procbio.2009.09.006

    CAS  Google Scholar 

  351. Díaz-Díaz G, Blanco-López MC, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P (2010) Kinetic study of the oxidative dehalogenation of 2,4,6-trichlorophenol catalyzed by chloroperoxidase. J Mol Catal B 66(3–4):332–336

    Google Scholar 

  352. Wang W, Xu Y, Wang DIC, Li Z (2009) Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. J Am Chem Soc 131(36):12892–12893. doi:10.1021/ja905477j

    CAS  Google Scholar 

  353. Roberge C, Amos D, Pollard D, Devine P (2009) Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J Mol Catal B 56(1):41–45. doi:10.1016/j.molcatb.2008.04.002

    CAS  Google Scholar 

  354. Renirie R, Pierlot C, Wever R, Aubry JM (2009) Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase. J Mol Catal B 56(4):259–264. doi:10.1016/j.molcatb.2008.05.014

    CAS  Google Scholar 

  355. Perez DI, van Rantwijk F, Sheldon RA (2009) Cross-linked enzyme aggregates of chloroperoxidase: synthesis, optimization and Characterization. Adv Synth Catal 351(13):2133–2139

    CAS  Google Scholar 

  356. de Hoog HM, Nallani M, Cornelissen J, Rowan AE, Nolte RJM, Arends I (2009) Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Org Biomol Chem 7(22):4604–4610. doi:10.1039/b911370c

    Google Scholar 

  357. Kaup B-A, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99(3):491–498

    CAS  Google Scholar 

  358. Jung D, Streb C, Hartmann M (2008) Oxidation of indole using chloroperoxidase and glucose oxidase immobilized on SBA-15 as tandem biocatalyst. Microporous Mesoporous Mater 113(1–3):523–529. doi:10.1016/j.micromeso.2007.12.009

    CAS  Google Scholar 

  359. Grey CE, Rundbäck F, Adlercreutz P (2008) Improved operational stability of chloroperoxidase through use of antioxidants. J Biotechnol 135(2):196–201

    CAS  Google Scholar 

  360. Aguila S, Vazquez-Duhalt R, Tinoco R, Rivera M, Pecchi G, Alderete JB (2008) Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green Chem 10(6):647–653. doi:10.1039/b719992a

    CAS  Google Scholar 

  361. Kaup BA, Piantini U, Wust M, Schrader J (2007) Monoterpenes as novel substrates for oxidation and halo-hydroxylation with chloroperoxidase from Caldariomyces fumago. Appl Microbiol Biotechnol 73(5):1087–1096. doi:10.1007/s00253-006-0559-3

    CAS  Google Scholar 

  362. Grey CE, Hedström M, Adlercreutz P (2007) A mass spectrometric Investigation of native and oxidatively inactivated chloroperoxidase. ChemBioChem 8(9):1055–1062

    CAS  Google Scholar 

  363. Park J-B, Clark DS (2006) New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng 94(1):189–192

    CAS  Google Scholar 

  364. Yi X, Mroczko M, Manoj KM, Wang X, Hager LP (1999) Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue. Proc Natl Acad Sci 96(22):12412–12417. doi:10.1073/pnas.96.22.12412

    CAS  Google Scholar 

  365. Kiljunen E, Kanerva LT (1999) Novel applications of chloroperoxidase: enantioselective oxidation of racemic epoxyalcohols. Tetrahedron Asymm 10(18):3529–3535

    CAS  Google Scholar 

  366. Hu S, Hager LP (1999) Highly enantioselective propargylic hydroxylations catalyzed by chloroperoxidase. J Am Chem Soc 121(4):872–873. doi:10.1021/ja983612g

    CAS  Google Scholar 

  367. Hager LP, Lakner FJ, Basavapathruni A (1998) Chiral synthons via chloroperoxidase catalysis. J Mol Catal B 5(1–4):95–101

    CAS  Google Scholar 

  368. Aoun S, Baboulene M (1998) Regioselective bromohydroxylation of alkenes catalyzed by chloroperoxidase: advantages of the immobilization of enzyme on talc. J Mol Catal B 4(1–2):101–109

    CAS  Google Scholar 

  369. Lakner FJ, Cain KP, Hager LP (1997) Enantioselective epoxidation of bromo-2-methyl-1-alkenes catalyzed by chloroperoxidase. Effect of chain length on selectivity and efficiency. J Am Chem Soc 119(2):443–444

    CAS  Google Scholar 

  370. Lakner FJ, Hager LP (1996) Chloroperoxidase as enantioselective epoxidation catalyst: an efficient synthesis of (R)-(−)-Mevalonolactone. J Org Chem 61(11):3923–3925. doi:10.1021/jo960074m

    CAS  Google Scholar 

  371. Zaks A, Dodds DR (1995) Chloroperoxidase-catalyzed asymmetric oxidations: substrate specificity and mechanistic study. J Am Chem Soc 117(42):10419–10424

    CAS  Google Scholar 

  372. Allain EJ, Hager LP, Deng L, Jacobsen EN (1993) Highly enantioselective epoxidation of disubstituted alkenes with hydrogen peroxide catalyzed by chloroperoxidase. J Am Chem Soc 115(10):4415–4416. doi:10.1021/ja00063a091

    CAS  Google Scholar 

  373. Dawson JH, Sono M (1987) Cytochrome P-450 and chloroperoxidase: thiolate-ligated heme enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation. J Am Chem Soc 87(5):1255–1276. doi:10.1021/cr00081a015

    CAS  Google Scholar 

  374. Geigert J, Dalietos DJ, Neidleman SL, Lee TD, Wadsworth J (1983) Peroxide oxidation of primary alcohols to aldehydes by chloroperoxidase catalysis. Biochem Biophys Res Commun 114(3):1104–1108

    CAS  Google Scholar 

  375. Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F (2011) Specific photobiocatalytic oxyfunctionalization reactions. Angew Chem Int Ed 50(45):10716–10719. doi:10.1002/anie.201105308

    CAS  Google Scholar 

  376. Wang X, Peter S, Ullrich R, Hofrichter M, Groves JT (2013) Driving force for oxygen-atom transfer by heme-thiolate enzymes. Angew Chem Int Ed 52(35):9238–9241. doi:10.1002/ange.201302137

    CAS  Google Scholar 

  377. Piontek K, Strittmatter E, Ullrich R, Gröbe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner DA (2013) Structural basis of substrate conversion in a new aromatic peroxygenase: P450 functionality with benefits. J Biol Chem 288:34767–34776. doi:10.1074/jbc.M113.514521

    CAS  Google Scholar 

  378. Kluge M, Ullrich R, Scheibner K, Hofrichter M (2012) Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita. Green Chem 14(2):440–446

    CAS  Google Scholar 

  379. Peter S, Kinne M, Wang XS, Ullrich R, Kayser G, Groves JT, Hofrichter M (2011) Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J 278(19):3667–3675. doi:10.1111/j.1742-4658.2011.08285.x

    CAS  Google Scholar 

  380. Gutierrez A, Babot ED, Ullrich R, Hofrichter M, Martinez AT, del Rio JC (2011) Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch Biochem Biophys 514(1–2):33–43. doi:10.1016/j.abb.2011.08.001

    CAS  Google Scholar 

  381. Barková K, Kinne M, Ullrich R, Hennig L, Fuchs A, Hofrichter M (2011) Regioselective hydroxylation of diverse flavonoids by an aromatic peroxygenase. Tetrahedron 67(26):4874–4878

    Google Scholar 

  382. Vdovenko MM, Ullrich R, Hofrichter M, Sakharov IY (2010) Luminol oxidation by hydrogen peroxide with chemiluminescent signal formation catalyzed by peroxygenase from the fungus Agrocybe aegerita V.Brig. Appl Biochem Microbiol 46(1):65–68. doi:10.1134/s0003683810010114

    CAS  Google Scholar 

  383. Piontek K, Ullrich R, Liers C, Diederichs K, Plattner DA, Hofrichter M (2010) Crystallization of a 45 kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron. Acta Crystallogr F 66:693–698. doi:10.1107/s1744309110013515

    CAS  Google Scholar 

  384. Kinne M, Zeisig C, Ullrich R, Kayser G, Hammel KE, Hofrichter M (2010) Stepwise oxygenations of toluene and 4-nitrotoluene by a fungal peroxygenase. Biochem Biophys Res Commun 397(1):18–21. doi:10.1016/j.bbrc.2010.05.036

    CAS  Google Scholar 

  385. Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodeg 21(2):267–281

    CAS  Google Scholar 

  386. Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. Biotechnol J 4:1619–1626. doi:10.1002/biot.200900076

    CAS  Google Scholar 

  387. Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 84(5):885–897. doi:10.1007/s00253-009-2000-1

    CAS  Google Scholar 

  388. Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284(43):29343–29349. doi:10.1074/jbc.M109.040857

    CAS  Google Scholar 

  389. Kinne M, Poraj-Kobielska M, Aranda E, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2009) Regioselective preparation of 5-hydroxypropranolol and 4′-hydroxydiclofenac with a fungal peroxygenase. Bioorg Med Chem Lett 19(11):3085–3087. doi:10.1016/j.bmcl.2009.04.015

    CAS  Google Scholar 

  390. Kinne M, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetraherdon Lett 49(41):5950–5953. doi:10.1016/j.tetlet.2008.07.152

    CAS  Google Scholar 

  391. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64(3):271–293. doi:10.1007/s00018-007-6362-1

    CAS  Google Scholar 

  392. Fujimori DG, Walsh CT (2007) What’s new in enzymatic hallogenations. Curr Opin Chem Biol 11(5):553–560. doi:10.1016/j.cbpa.2007.08.002

    CAS  Google Scholar 

  393. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124(4):670–689. doi:10.1016/j.jbiotec.2006.03.044

    Google Scholar 

  394. Frese M, Guzowska PH, Voß H, Sewald N (2014) Regioselective enzymatic halogenation of substituted tryptophan derivatives using the FAD-dependent halogenase RebH. ChemCatChem 6:1270–1276. doi:10.1002/cctc.201301090

    CAS  Google Scholar 

  395. van Pee K-H (2012) Halogenating enzymes for selective halogenation reactions. Curr Org Chem 16(21):2583–2597. doi:10.2174/138527212804004607

    Google Scholar 

  396. van Pee KH (2011) Transformation with tryptophan halogenase genes leads to the production of new chlorinated alkaloid metabolites by a medicinal plant. ChemBioChem 12(5):681–683. doi:10.1002/cbic.201100016

    Google Scholar 

  397. Zeng J, Zhan J (2010) A novel fungal flavin-dependent halogenase for natural product biosynthesis. ChemBioChem. doi:10.1002/cbic.201000439

    Google Scholar 

  398. Podzelinska K, Latimer R, Bhattacharya A, Vining LC, Zechel DL, Jia ZC (2010) Chloramphenicol biosynthesis: the structure of CmIS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. J Mol Biol 397(1):316–331. doi:10.1016/j.jmb.2010.01.020

    CAS  Google Scholar 

  399. Neumann CS, Walsh CT, Kay RR (2010) A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of dictyostelium differentiation-inducing factor 1. Proc Natl Acad Sci USA 107(13):5798–5803. doi:10.1073/pnas.1001681107

    CAS  Google Scholar 

  400. Zhu XF, De Laurentis W, Leang K, Herrmann J, Lhiefeld K, van Pee KH, Naismith JH (2009) Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J Mol Biol 391(1):74–85. doi:10.1016/j.jmb.2009.06.008

    CAS  Google Scholar 

  401. van Pee KH, Patallo EP (2006) Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 70(6):631–641. doi:10.1007/s00253-005-0232-2

    CAS  Google Scholar 

  402. Seibold C, Schnerr H, Rumpf J, Kunzendorf A, Hatscher C, Wage T, Ernyei AJ, Dong CJ, Naismith JH, van Pee KH (2006) A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal Biotransf 24(6):401–408. doi:10.1080/10242420601033738

    CAS  Google Scholar 

  403. Unversucht S, Hollmann F, Schmid A, van Pée K-H (2005) FADH2-dependence of tryptophan 7-halogenase. Adv Synth Catal 347(7–8):1163–1167

    CAS  Google Scholar 

  404. Dong CJ, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH (2005) Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309(5744):2216–2219. doi:10.1126/science.1116510

    CAS  Google Scholar 

  405. Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée K-H (2000) Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew Chem Int Ed 39(13):2300–2302. doi:10.1002/1521-3773(20000703)39:13<2300:aid-anie2300>3.0.co;2-i

    CAS  Google Scholar 

  406. Payne JT, Andorfer MC, Lewis JC (2013) Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angew Chem-Int Edit 52(20):5271–5274. doi:10.1002/anie.201300762

    CAS  Google Scholar 

  407. But A, Le Nôtre J, Scott EL, Wever R, Sanders JPM (2012) Selective oxidative decarboxylation of amino acids to produce industrially relevant nitriles by vanadium chloroperoxidase. ChemSusChem 5(7):1199–1202. doi:10.1002/cssc.201200098

    CAS  Google Scholar 

  408. Getrey L, Krieg T, Hollmann F, Schrader J, Holtmann D (2014) Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase. Green Chem 16:1104–1108

    CAS  Google Scholar 

  409. Karl U, Simon A (2009) BASF’s ChiPros chiral building blocks. Chimica Oggi 27:5

    Google Scholar 

  410. Allen JV, Williams JMJ (1996) Dynamic kinetic resolution with enzyme and palladium combinations. Tetraherdon Lett 37(11):1859–1862. doi:10.1016/0040-4039(96)00136-0

    CAS  Google Scholar 

  411. Martin-Matute B, Backvall JE (2007) Dynamic kinetic resolution catalyzed by enzymes and metals. Curr Opin Chem Biol 11(2):226–232. doi:10.1016/j.cbpa.2007.01.724

    CAS  Google Scholar 

  412. Pamies O, Backvall JE (2003) Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem Rev 103(8):3247–3262

    CAS  Google Scholar 

  413. Lee JH, Han K, Kim MJ, Park J (2010) Chemoenzymatic dynamic kinetic resolution of alcohols and amines. Eur J Org Chem 6:999–1015. doi:10.1002/ejoc.200900935

    Google Scholar 

  414. Thum O, Oxenbøll KM (2008) Biocatalysis—a sustainable method for the production of emollient esters. SOFW J 134:44

    CAS  Google Scholar 

  415. Thum O (2004) Enzymatic production of care specialties based on fatty acid esters. Tensides Surfactants Detergents 41(6):287–290

    CAS  Google Scholar 

  416. Robins K, Gilligan T (1992) Biotechnological process for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide and R-(−)-2,2-dimethylcyclopropanecarboxylic acid. European patent (EP0502525) (by Lonza AG)

  417. Eichhorn E, Roduit JP, Shaw N, Heinzmann K, Kiener A (1997) Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron-Asymmetry 8(15):2533–2536. doi:10.1016/s0957-4166(97)00256-5

    CAS  Google Scholar 

  418. Shaw NM, Naughton A, Robins K, Tinschert A, Schmid E, Hischier ML, Venetz V, Werlen J, Zimmermann T, Brieden W, de Riedmatten P, Roduit JP, Zimmermann B, Neumuller R (2002) Selection, purification, characterisation, and cloning of a novel heat-stable stereo-specific amidase from Klebsiella oxytoca, and its application in the synthesis of enantiomerically pure (R)- and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acids and (S)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamide. Org Process Res Dev 6(4):497–504. doi:10.1021/op020025d

    CAS  Google Scholar 

  419. Leuchtenberger W, Karrenbauer M, Plocker U (1984) Scale-up of an enzyme membrane reactor process for the manufacture of l-enantiomeric compounds. Ann New York Acad Sci 434:78–86. doi:10.1111/j.1749-6632.1984.tb29803.x

    CAS  Google Scholar 

  420. Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) Chemoenzymatic synthesis OF (−)-carbovir utilizing a whole cell catalyzed resolution of 2-azabicyclo 2.2.1 hept-5-en-3-one. J Chem Soc-Chem Commun 16:1120–1121. doi:10.1039/c39900001120

    Google Scholar 

  421. Crosby J (1991) Synthesis of optically active compounds: a large scale perspective. Tetrahedron 47(27):4789–4846. doi:10.1016/S0040-4020(01)80950-9

    CAS  Google Scholar 

  422. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of beta-lactam antibiotics. Org Process Res Dev 2(2):128–133. doi:10.1021/op9700643

    CAS  Google Scholar 

  423. Oyama K, Nishimura S, Nonaka Y, Kihara KI, Hashimoto T (1981) Synthesis of an aspartame precursor by immobilized thermolysin in an organic-solvent. J Org Chem 46(25):5241–5242. doi:10.1021/jo00338a045

    CAS  Google Scholar 

  424. de Vries EJ, Janssen DB (2003) Biocatalytic conversion of epoxides. Curr Opin Biotechnol 14(4):414–420. doi:10.1016/s0958-1669(03)00102-2

    Google Scholar 

  425. Weijers C (1997) Enantioselective hydrolysis of aryl, alicyclic and aliphatic epoxides by Rhodotorula glutinis. Tetrahedron-Asymmetry 8(4):639–647. doi:10.1016/s0957-4166(97)00012-8

    CAS  Google Scholar 

  426. Reetz MT, Torre C, Eipper A, Lohmer R, Hermes M, Brunner B, Maichele A, Bocola M, Arand M, Cronin A, Genzel Y, Archelas A, Furstoss R (2004) Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org Lett 6(2):177–180. doi:10.1021/ol035898m

    CAS  Google Scholar 

  427. Mischitz M, Kroutil W, Wandel U, Faber K (1995) Asymmetric microbial hydrolysis of epoxides. Tetrahedron-Asymmetry 6(6):1261–1272. doi:10.1016/0957-4166(95)00158-l

    CAS  Google Scholar 

  428. PedragosaMoreau S, Archelas A, Furstoss R (1996) Microbiological transformations. 32. Use of epoxide hydrolase mediated biohydrolysis as a way to enantiopure epoxides and vicinal diols: application to substituted styrene oxide derivatives. Tetrahedron 52(13):4593–4606. doi:10.1016/0040-4020(96)00135-4

    CAS  Google Scholar 

  429. Hasnaoui-Dijoux G, Elenkov MM, Spelberg JHL, Hauer B, Janssen DB (2008) Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. ChemBioChem 9(7):1048–1051. doi:10.1002/cbic.200700734

    CAS  Google Scholar 

  430. Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA (2010) A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 12(1):81–86. doi:10.1039/b919115c

    CAS  Google Scholar 

  431. Spelberg JHL, Vlieg J, Tang LX, Janssen DB, Kellogg RM (2001) Highly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides. Org Lett 3(1):41–43

    CAS  Google Scholar 

  432. Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG (2008) Dynamic kinetic resolution of racemic beta-haloalcohols: direct access to enantioenriched epoxides. J Am Chem Soc 130 (41):13508–+. doi:10.1021/ja805128x

  433. Gavagan JE, DiCosimo R, Eisenberg A, Fager SK, Folsom PW, Hann EC, Schneider KJ, Fallon RD (1999) A Gram-negative bacterium producing a heat-stable nitrilase highly active on aliphatic dinitriles. Appl Microbiol Biotechnol 52(5):654–659

    CAS  Google Scholar 

  434. Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R (1999) 5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23. Bioorg Med Chem 7(10):2239–2245. doi:10.1016/s0968-0896(99)00157-1

    CAS  Google Scholar 

  435. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60(9):1391–1400

    CAS  Google Scholar 

  436. Fesko K, Gruber-Khadjawi M (2013) Biocatalytic methods for C–C bond formation. ChemCatChem 5(6):1248–1272. doi:10.1002/cctc.201200709

    CAS  Google Scholar 

  437. Holt J, Hanefeld U (2009) Enantioselective enzyme-catalysed synthesis of cyanohydrins. Curr Org Synth 6(1):15–37

    CAS  Google Scholar 

  438. Effenberger F, Forster S, Wajant H (2000) Hydroxynitrile lyases in stereoselective catalysis. Curr Opin Biotechnol 11(6):532–539

    CAS  Google Scholar 

  439. Effenberger F (1994) Synthesis and reactions of optically-active cyanohydrins. Angew Chem-Int Edit Engl 33(15–16):1555–1564. doi:10.1002/anie.199415551

    Google Scholar 

  440. Kiljunen E, Kanerva LT (1997) Novel (R)-oxynitrilase sources for the synthesis of (R)-cyanohydrins in diisopropyl ether. Tetrahedron-Asymmetry 8(8):1225–1234. doi:10.1016/s0957-4166(97)00080-3

    CAS  Google Scholar 

  441. Forster S, Roos J, Effenberger F, Wajant H, Sprauer A (1996) The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)-cyanohydrins. Angew Chem-Int Edit Engl 35(4):437–439

    Google Scholar 

  442. Purkarthofer T, Skranc W, Schuster C, Griengl H (2007) Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Appl Microbiol Biotechnol 76(2):309–320. doi:10.1007/s00253-007-1025-6

    CAS  Google Scholar 

  443. van Langen LM, Selassa RP, van Rantwijk F, Sheldon RA (2005) Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation. Org Lett 7(2):327–329. doi:10.1021/ol047647z

    Google Scholar 

  444. van Langen LM, van Rantwijk F, Sheldon RA (2003) Enzymatic hydrocyanation of a sterically hindered aidehyde. Optimization of a chemoenzymatic procedure for (R)-2-chloromandelic acid. Org Process Res Dev 7(6):828–831. doi:10.1021/op0340964

    Google Scholar 

  445. Weis R, Gaisberger R, Skranc W, Gruber K, Glieder A (2005) Carving the active site of almond R-HNL for increased enantioselectivity. Angew Chem-Int Edit 44(30):4700–4704. doi:10.1002/anie.200500435

    Google Scholar 

  446. Purkarthofer T, Pabst T, van den Broek C, Griengl H, Maurer O, Skranc W (2006) Large-scale synthesis of (R)-2-amino-1-(2-furyl)ethanol via a chemoenzymatic approach. Org Process Res Dev 10(3):618–621. doi:10.1021/op050264b

    CAS  Google Scholar 

  447. Vugts DJ, Veum L, al-Mafraji K, Lemmens R, Schmitz RF, de Kanter FJJ, Groen MB, Hanefeld U, Orru RVA (2006) A mild chemo-enzymatic oxidation-hydrocyanation protocol. Eur J Org Chem 7:1672–1677. doi:10.1002/e.joc.200500905

    Google Scholar 

  448. Kluger R (1990) Ionic intermediates in enzyme-catalyzed carbon-carbon bond formation—patterns, prototypes, probes, and proposals. Chem Rev 90(7):1151–1169. doi:10.1021/cr00105a005

    CAS  Google Scholar 

  449. Kuo DJ, Rose IA (1985) Chemical trapping of complexes of dihydroxyacetone phosphate with muscle fructose-1,6-bisphosphate aldolase. Biochemistry 24(15):3947–3952. doi:10.1021/bi00336a022

    CAS  Google Scholar 

  450. Fessner WD, Schneider A, Held H, Sinerius G, Walter C, Hixon M, Schloss JV (1996) The mechanism of class II, metal-dependent aldolases. Angew Chem-Int Edit 35(19):2219–2221. doi:10.1002/anie.199622191

    CAS  Google Scholar 

  451. Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercey JE, Ramlakhan D, Todd M, Dawson MJ (1997) An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enz Microb Technol 20(5):393–400. doi:10.1016/s0141-0229(96)00180-9

    CAS  Google Scholar 

  452. Zaks A, Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2(12):513–531. doi:10.1016/s1359-6446(97)01078-7

    CAS  Google Scholar 

  453. Kragl U, Gygax D, Ghisalba O, Wandrey C (1991) Enzymatic 2-step synthesis OF N-acetylneuraminic acid in the enzyme membrane reactor. Angew Chem-Int Edit Engl 30(7):827–828. doi:10.1002/anie.199108271

    Google Scholar 

  454. Wong CH, Garciajunceda E, Chen LR, Blanco O, Gijsen HJM, Steensma DH (1995) Recombinant 2-deoxyribose-5-phosphate aldolase in organic-synthesis—use of sequential 2-substrate and 3-substrate aldol reactions. J Am Chem Soc 117(12):3333–3339. doi:10.1021/ja00117a003

    CAS  Google Scholar 

  455. Greenberg WA, Varvak A, Hanson SR, Wong K, Huang HJ, Chen P, Burk MJ (2004) Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. Proc Natl Acad Sci USA 101(16):5788–5793. doi:10.1073/pnas.0307563101

    CAS  Google Scholar 

  456. DeSantis G, Liu JJ, Clark DP, Heine A, Wilson IA, Wong CH (2003) Structure-based mutagenesis approaches toward expanding the substrate specificity of d-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem 11(1):43–52. doi:10.1016/s0968-0896(02)00429-7

    CAS  Google Scholar 

  457. Muller M (2005) Chemoenzymatic synthesis of building blocks for statin side chains. Angew Chem-Int Edit 44(3):362–365. doi:10.1002/anie.200460852

    Google Scholar 

  458. Neuberg C, Hirsch J (1921) The carbon chain of attached enzymes (carboligase). Biochem Z 115:282–310

    CAS  Google Scholar 

  459. Neuberg C, Ohle H (1922) Information on carboligase. III. Note. The construction of biosynthetic linked, multi-section, catenarian carbon. Biochem Z 127:327–339

    CAS  Google Scholar 

  460. Neuberg C, Ohle H (1922) Information on carboligase. IV. Announcement. Further conclusions on the biosynthetic carbon chain combination in fermentation processes. Biochem Z 128:610–618

    CAS  Google Scholar 

  461. Demir AS, Sesenoglu O, Eren E, Hosrik B, Pohl M, Janzen E, Kolter D, Feldmann R, Dunkelmann P, Muller M (2002) Enantioselective synthesis of alpha-hydroxy ketones via benzaldehyde lyase-catalyzed C–C bond formation reaction. Adv Synth Catal 344(1):96–103. doi:10.1002/1615-4169(200201)344:1<96:aid-adsc96>3.0.co;2-z

    CAS  Google Scholar 

  462. Daneel HJ, Busse M, Faurie R (1996) Fumarate hydratase from Corynebacterium glutamicum-process related optimization of enzyme productivity for biotechnical l-malic acid synthesis. Med Fac Landbouww Univ Gent 61(4a):1333–1340

    Google Scholar 

  463. Daneel HJ, Geiger R (1994) Enzymatic production of malic acid from fumaric acid. DE19944424664 19940714 (by Amino GmbH)

  464. Terasawa M, Yukawa H, Takayama Y (1985) Production of l-aspartic acid from brevibacterium by the cell re-using process. Proc Biochem 20(4):124–128

    CAS  Google Scholar 

  465. Yamagata H, Terasawa M, Yukawa H (1994) A novel industrial-process for l-aspartic acid production using an ultrafiltration-membrane. Catal Today 22(3):621–627. doi:10.1016/0920-5861(94)80127-4

    CAS  Google Scholar 

  466. Tosa T, Shibatani T (1995) Industrial application of immobilized biocatalysts in Japan. In: Legoy MD, Thomas D (eds) Enzyme Engineering XII, vol 750. Annals of the New York Academy of Sciences. New York Acad Sciences, New York, pp 364–375. doi:10.1111/j.1749-6632.1995.tb19981.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hollmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrelo, G., Hanefeld, U. & Hollmann, F. Biocatalysis. Catal Lett 145, 309–345 (2015). https://doi.org/10.1007/s10562-014-1450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1450-y

Keywords

Navigation