Skip to main content
Log in

The Oxidative Dehydrogenation of Propane over NiO–ZrO2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxidative dehydrogenation of propane (ODHP) over NiO–Bi2O3–ZrO2 catalyst was carried out with a fixed-bed flow reactor at 400 °C under atmospheric pressure. NiO–Bi2O3–ZrO2 prepared by the co-precipitation method afforded moderate propane conversion of 18.6% and propylene selectivity of 56.1% at 400 °C. From XPS analyses of the used catalysts, NiO/ZrO2 prepared by the impregnation method exhibited reduced metallic Ni species after the ODHP for 1 h. On the other hand, NiO–ZrO2 and NiO–Bi2O3–ZrO2 prepared by the co-precipitation method exhibited predominantly NiO and Ni2O3 together with a minor amount of metallic Ni. From TPR and TPO, it was suggested that propylene was formed by the reaction with adsorbed oxygen species on NiO x , in contrast, metallic Ni promoted complete oxidation of propane to decrease propylene selectivity. Thus, to maintain Ni species in the oxidized state was crucial for the high selectivity to propylene. The additive effect of Bi2O3 is ascribed to have kept NiO in the solid solution less reducible state. In addition, once metallic Ni was formed, it could easily be oxidized to NiO or Ni2O3.

Graphical Abstract

Oxidative dehydrogenation of propane (ODHP) proceeded on NiO–Bi2O3–ZrO2 prepared by co-precipitation method with the propane conversion of 18.6% and propylene selectivity of 56.1% at 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kung HH (1994) Adv Catal 40:1

    Article  CAS  Google Scholar 

  2. Bañares MA (1999) Catal Today 51:319

    Article  Google Scholar 

  3. Cavani F, Ballrini N, Cericola A (2007) Catal Today 127:113

    Article  CAS  Google Scholar 

  4. Botella P, Dejoz A, Nieto JML, Concepcion P, Vazquez MI (2006) Appl Catal A 298:16

    Article  CAS  Google Scholar 

  5. Botella P, García-González E, Dejoz A, Nieto JML, Vázquez MI, González-Calbet J (2004) J Catal 225:428

    Article  CAS  Google Scholar 

  6. Grubert G, Kondratenko E, Kolf S, Baerns M, Geem PV, Parton R (2003) Catal Today 81:337

    Article  CAS  Google Scholar 

  7. Zhang X, Gong Y, Yu G, Xie Y (2002) J Mol Catal A 180:293

    Article  CAS  Google Scholar 

  8. Zhang X, Liu J, Jing Y, Xie Y (2003) Appl Catal A 240:143

    Article  CAS  Google Scholar 

  9. Heracleous E, Lemonidou AA (2006) J Catal 237:162

    Article  CAS  Google Scholar 

  10. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463

    Article  CAS  Google Scholar 

  11. Corma A, Nieto JML, Paredes N (1993) J Catal 144:425

    Article  CAS  Google Scholar 

  12. Pak C, Bell AT, Tilley TD (2002) J Catal 206:49

    Article  CAS  Google Scholar 

  13. Klishinska A, Samson K, Gressel I, Grzybowska B (2006) Appl Catal A 309:10

    Article  Google Scholar 

  14. Klishinska A, Loridant S, Grzybowska B, Stoch J, Gressel I (2006) Appl Catal A 309:17

    Article  Google Scholar 

  15. Sam DSH, Soenen V, Volta JC (1990) J Catal 123:417

    Article  CAS  Google Scholar 

  16. Soenen V, Herrmann JM, Volta JC (1996) J Catal 159:410

    Article  CAS  Google Scholar 

  17. Burrows A, Kiely CJ, Perregaard J, Højlund-Nielsen PE, Vorbeck G, Calvino JJ, López-Cartes C (1999) Catal Lett 57:121

    Article  CAS  Google Scholar 

  18. Sugiyama S, Iizuka Y, Fukuda N, Hayashi H (2001) Catal Lett 73:137

    Article  CAS  Google Scholar 

  19. Sugiyama S, Hashimoto T, Shigemoto N, Hayashi H (2003) Catal Lett 89:229

    Article  CAS  Google Scholar 

  20. Sugiyama S, Hashimoto T, Morishita Y, Shigemoto N, Hayashi H (2004) Appl Catal A 270:253

    Article  CAS  Google Scholar 

  21. Chao Z, Ruckenstein E (2004) Catal Lett 94:217

    Article  CAS  Google Scholar 

  22. Buyevskaya OV, Bruckner A, Kondratenko EV, Wolf D, Baerns M (2001) Catal Today 67:369

    Article  CAS  Google Scholar 

  23. Lezla O, Bordes E, Courtime P, Hecquet G (1997) J Catal 170:346

    Article  CAS  Google Scholar 

  24. Zhaorigetu B, Li W, Kieffer R, Xu H (2002) Catal Lett 75:275

    Article  Google Scholar 

  25. Zhaorigetu B, Li W, Xu H, Kieffer R (2004) Catal Lett 94:125

    Article  Google Scholar 

  26. Jalowiechi-Duhamel L, Ponchel A, Lamonier C, D’ Huysser A, Barbaux Y (2001) Langmuir 17:1511

    Article  Google Scholar 

  27. Boizumault-Moriceau P, Pennequin A, Grzybowska B, Barbaux Y (2003) Appl Catal A 245:55

    Article  CAS  Google Scholar 

  28. Liu Y, Wang L, Chen M, Xu J, Cao Y, He H, Fan K (2009) Catal Lett 130:350

    Article  CAS  Google Scholar 

  29. Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K (2001) J Chem Technol Biotechnol 76:265

    Article  CAS  Google Scholar 

  30. Wu Y, He Y, Chen T, Weng W, Wan H (2006) Appl Surf Sci 252:5220

    Article  CAS  Google Scholar 

  31. He Y, Wu Y, Chen T, Weng W, Wan H (2006) Catal Commun 7:268

    Article  CAS  Google Scholar 

  32. Nieto JML, Coenraads R, Dejoz A, Vazquez MI (1997) Stud Surf Sci Catal 110:443

    Article  CAS  Google Scholar 

  33. Stern DL, Michaels JN, Decaul L, Grasselli RK (1997) Appl Catal A 153:21

    Article  CAS  Google Scholar 

  34. Takita Y, Sano K, Kurosaki K, Kawata N, Nishiguchi H, Ito M, Ishihara T (1998) Appl Catal A 167:49

    Article  CAS  Google Scholar 

  35. Sakitani K, Nakamura K, Ikenaga N, Miyake T, Suzuki T (to be published)

  36. Xie H, Yang GC, La PQ, Hao WX, Fan JF, Liu WM, Xu LJ (2004) Mater Charact 52:153

    Article  CAS  Google Scholar 

  37. Kwon Y, Kim N, Choi G, Lee W, Seo Y, Park J (2005) Microelectron Eng 82:314

    Article  CAS  Google Scholar 

  38. Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A (2007) Appl Catal A 329:68

    Article  CAS  Google Scholar 

  39. Zeng HC, Lin J, Teo WK, Loh FC, Tan KL (1995) J Non-Cryst Solids 181:49

    Article  CAS  Google Scholar 

  40. Romero R, Martin F, Ramos-Barrado JR, Leinen D (2010) Surf Coat Technol 204:2060

    Article  CAS  Google Scholar 

  41. Nakamura K, Miyake T, Konishi T, Suzuki T (2006) J Mol Catal A 260:144

    Article  CAS  Google Scholar 

  42. Bose AC, Ramamoorthy R, Ramasamy S (2000) Mater Lett 44:203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grand-in-Aid for Scientific Research (B 18360382) and the “High-Tech Research Center Project” (2007-2011) by MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukudome, K., Kanno, A., Ikenaga, No. et al. The Oxidative Dehydrogenation of Propane over NiO–ZrO2 Catalyst. Catal Lett 141, 68–77 (2011). https://doi.org/10.1007/s10562-010-0461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0461-6

Keywords

Navigation