Skip to main content
Log in

Synthesis of Propylene Glycol Monomethyl Ether Over Mg/Al Hydrotalcite Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mg–Al hydrotalcites with different Mg/Al molar ratios were prepared and characterized by XRD, FT-IR, SEM and BET analyses. The calcined hydrotalcite with Mg/Al molar ratio of 4.0 (LDO Mg/Al 4.0) exhibited the highest catalytic activity in the synthesis of propylene glycol methyl ether (PM). The catalytic activity relating to the amount of the basic sites and crystallinity depended on the Mg/Al molar ratio. The optimal equilibrium of acid–base property and high crystallinity made the LDO Mg/Al 4.0 an excellent catalyst in the reaction. Etherification of propylene oxide (PO) with methanol over the LDO Mg/Al 4.0 was researched. The optimized reaction conditions were as follows: 140 °C, catalyst amount 0.9 wt%, methanol/PO molar ratio 4.0 and 6 h. The PO conversion and PM selectivity were 93.2 and 97.4%, respectively. Above all, almost all the PM was 1-methoxy-2-propanol, for no 2-methoxy-1-propanol was detected by GC analysis in the reaction products, and the catalyst could be reused for five times.

Graphical Abstract

The particles of the LDH Mg/Al 4.0 showed well-developed hexagonal plates with narrow size distribution (2–4 μm) and were in line with the typical morphology for hydrotalcite-like materials. The optimal equilibrium of acid-base property and high crystallinity made the LDO Mg/Al 4.0 an excellent catalyst in the synthesis of propylene glycol methyl ether (PM) from methanol and propylene oxide (PO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hootha MJ, Herberta RA, Hasemana JK, Orzecha DP, Johnsonb JD, Buchera JR (2004) Toxicology 204:123

    Article  Google Scholar 

  2. Cheng W, Wang W, Zhao Y, Liu L, Yang J, He M (2008) Appl Clay Sci 42:111

    Article  CAS  Google Scholar 

  3. Corley RA, Gies RA, Wu H, Weitz KK (2005) Toxicol Lett 156:193

    Article  CAS  Google Scholar 

  4. Zhang W, Wang H, Li Q, Dong Q, Zhao N, Wei W, Sun Y (2005) Appl Catal A 294:188

    Article  CAS  Google Scholar 

  5. Chitwood HC, Freure BT (1946) J Am Chem Soc 68:688

    Article  Google Scholar 

  6. Martins L, Hölderich W, Cardoso D (2008) J Catal 258:14

    Article  CAS  Google Scholar 

  7. Zhang W, Wang H, Wei W, Sun Y (2005) J Mol Catal A 231:83

    Article  CAS  Google Scholar 

  8. Fujita S-I, Bhanage BM, Aoki D, Ochiai Y, Iwasa N, Arai M (2006) Appl Catal A 313:151

    Article  CAS  Google Scholar 

  9. Atkins MP, Jones W, Chibwe M, US Patent 5,110,992 (1992)

  10. Malherbe F, Besse J-P, Wadel SR, Smith WJ (2000) Catal Lett 67:197

    Article  CAS  Google Scholar 

  11. Zeng HY, Deng X, Wang YJ, Liao KB (2009) AIChE J 55:1229

    Article  CAS  Google Scholar 

  12. Yang Z, Xie W (2007) Fuel Processing Technol 88:631

    Article  CAS  Google Scholar 

  13. Raj CBC, Quen HL (2005) Chem Eng Sci 60:5305

    Article  CAS  Google Scholar 

  14. JCPDS X-ray powder diffraction file, no. 22-700 (1986)

  15. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  16. Kannan S, Narayanan A, Swamy CS (1996) J Mater Sci 31:2353

    Article  CAS  Google Scholar 

  17. Costantino U, Marmottini F, Nocchetti M, Vivani R (1998) Eur J Inorg Chem 10:1439

    Article  Google Scholar 

  18. Dos Reis MJ, Silverio F, Tronto J, Valim JB (2004) J Phys Chem Solids 65:487

    Article  Google Scholar 

  19. Kloprogge TJ, Frost RL (1999) J Solid State Chem 146:506

    Article  CAS  Google Scholar 

  20. Hernandez-Moreno MJ, Ulibarri MA, Rendon JL, Serna CJ (1985) Phys Chem Miner 12:34

    CAS  Google Scholar 

  21. Adachi-Pagano M, Forano C, Besse J-P (2003) J Mater Chem 13:1988

    Article  CAS  Google Scholar 

  22. Rao MM, Reddy BR, Jayalakshmi M, Jaya VS, Sridhar B (2005) Mater Res Bull 40:347

    Article  CAS  Google Scholar 

  23. Lei XD, Zhang FZ, Yang L, Guo XX, Tian YY, Fu SS, Li F, Evans DG, Duan X (2007) AIChE J 53:932

    Article  CAS  Google Scholar 

  24. Xie WL, Peng H, Chen LG (2006) J Mol Catal A 246:24

    Article  CAS  Google Scholar 

  25. Prinetto F, Tichit D, Teissier R, Coq B (2000) Catal Today 55:103

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Scientific Research Fund of Hunan Provincial Education Department of China though key-project (No. 08A080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-yan Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Hy., Wang, Yj., Feng, Z. et al. Synthesis of Propylene Glycol Monomethyl Ether Over Mg/Al Hydrotalcite Catalyst. Catal Lett 137, 94–103 (2010). https://doi.org/10.1007/s10562-010-0335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0335-y

Keywords

Navigation