Skip to main content
Log in

Nanocrystalline Magnesium Oxide as a Versatile Heterogeneous Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cyclohexanone into Cyclohexanol: Effect of Preparation Method of Magnesium Oxide on Yield

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Meerwein–Ponndorf–Verley (MPV) reaction of cyclohexanone with 2-propanol in the liquid phase in the presence of two different nanocrystalline magnesium oxides, prepared by different methods, was investigated. The catalyst consisting of nanocrystalline magnesium oxide, which was prepared by calcination of magnesium methoxide in air at 400 °C, showed the highest activity in the conversion of cyclohexanone to cyclohexanol with 97% yield. The effect of calcination temperature of magnesium oxide on the cyclohexanol yield and reusability of the catalyst has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Creyghton EJ, Huskens J, van der Waal JC, van Bekkum H (1997) In: Blaser HU, Baiker A, Prins R (eds) Heterogeneous catalysis and fine chemicals IV. Elsevier, Amsterdam, p 531

    Chapter  Google Scholar 

  2. Ooi T, Miura T, Ohmasu K, Saito A, Maruoka K (2004) J Biomol Chem 2:3313

    Google Scholar 

  3. Ooi T, Ichikawa H, Marooka K (2001) Angew Chem Int Ed 40:3610

    Article  CAS  Google Scholar 

  4. Campbell EJ, Zhou H, Nguyen ST (2001) Org Lett 3:2391

    Article  CAS  Google Scholar 

  5. Maillard D, Nguefack C, Pozzi G, Quici S, Balada B, Sinon D (2000) Tetrahedron Asymmetr 11:2821

    Article  Google Scholar 

  6. Petra DGI, Reek JNH, Schoemaker PCJ, Leeuwen PWNM (2000) Chem Commun 683

  7. Warner BP, D’Alessio JA, Morgan AN, Burns CJ, Schake AR, Watkin JG (2000) Inorg Chim Acta 309:45

    Article  CAS  Google Scholar 

  8. Molander GA, Mckie JA (1993) J Am Chem Soc 115:5821

    Article  CAS  Google Scholar 

  9. Misra SN, Shukla RS, Gagnani MA (2005) J Colloid Interf Sci 281:164

    Article  CAS  Google Scholar 

  10. Zhu Y, Chuah G, Jaenicke S (2004) J Catal 227:1

    Article  CAS  Google Scholar 

  11. Zhu Y, Jaenicke S, Chuah GK (2003) J Catal 218:396

    Article  CAS  Google Scholar 

  12. Anwander R, Palm C, Gerstberger G, Groeger O, Engelhardt G (1998) Chem Commun 1811

  13. Ivanov VA, Bachelier J, Audry F, Lavalley JC (1994) J Mol Catal 91:45

    Article  CAS  Google Scholar 

  14. Kuno H, Takahashi K, Shibagaki M, Shimazaki K, Matsushita H (1991) Bull Chem Soc Jpn 64:312

    Article  CAS  Google Scholar 

  15. Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano FJ (2001) J Colloid Interf Sci 238:385

    Article  CAS  Google Scholar 

  16. Ruiz JR, Jimenez-Sanchidrian C, Hidalgo JM (2007) Catal Commun 8:1036

    Article  CAS  Google Scholar 

  17. Kumbhar PS, Sanchez-Valente J, Lopez J, Figueras F (1998) Chem Commun 535

  18. Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano FJ (2003) Appl Catal A 255:301

    Article  CAS  Google Scholar 

  19. Niyama H, Echigoya E (1972) Bull Chem Soc Jpn 45:938

    Article  Google Scholar 

  20. Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li W, Carnes C, Klabunde KJ (2001) Chem Eur J 7:2505

    Article  CAS  Google Scholar 

  21. Wang JA, Novaro O, Bokhimi X, Lopez T, Gomez R, Navarrete J, Llanos ME, Lopez-Salinas E (1997) J Phys Chem B 101:7448

    Article  CAS  Google Scholar 

  22. Culltiy BD (1978) Element of X-ray powder diffraction. Wiley, New York

    Google Scholar 

  23. Xu B-Q, Wei J-M, Wang H-Y, Sun K-Q, Zhu Q-M (2001) Catal Today 68:217

    Article  CAS  Google Scholar 

  24. Zhang G, Hattori H, Tanabe K (1989) Bull Chem Soc Jpn 62:2070

    Article  CAS  Google Scholar 

  25. Itoh H, Utamapanya S, Stark JV, Klabunde KJ, Schlup JR (1993) Chem Mater 5:71

    Article  CAS  Google Scholar 

  26. Derouance EG, Fripiat JC, Andre JM (1974) Chem Phys Lett 28:445

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of Iranian National Science Foundation (Grant No. 84201) and the Research Council of University of Tehran University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Amini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidari, H., Abedini, M., Nemati, A. et al. Nanocrystalline Magnesium Oxide as a Versatile Heterogeneous Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cyclohexanone into Cyclohexanol: Effect of Preparation Method of Magnesium Oxide on Yield. Catal Lett 130, 266–270 (2009). https://doi.org/10.1007/s10562-009-9885-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-9885-2

Keywords

Navigation