Skip to main content
Log in

Characterization of Mo Doped TiO2 and its Enhanced Photo Catalytic Activity Under Visible Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Transition metal doping into the TiO2 lattice can expand the response of these metal oxide nano particles to the visible region. In view of this, Mo6+ ion is doped into the TiO2 lattice in order to understand the mechanism of its photo response. The prepared photocatalysts were characterized by X-ray diffraction, UV–Visible absorption spectroscopy, UV–Visible diffuse reflectance spectroscopy, SEM, EDX, FTIR and BET specific surface area techniques. The characterization results have confirmed the incorporation of metal ions into TiO2 lattice. XRD analysis shows no change in crystal structure except a slight variation in crystallite size and elongation along the c-axis with increase in the concentration of the dopant. Diffuse reflectance measurements showed a shift in the band edge position to longer wavelengths and an extension of the absorption to the visible region. The photo degradation efficiencies of these catalysts were studied with Tebuconazole pesticide as model pollutant. Under UV light, undoped catalyst showed higher activity than doped catalyst. But in the case of visible light irradiation Mo doped TiO2 with intermediate dopant concentration of 0.06 atom % had the highest photocatalytic reactivity. This may be due to the narrowing of band gap so that it could effectively absorb the light of longer wavelength. The degradation path way was followed by UV–Visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pelizzetti E, Serpone N (eds) (1986) Homogeneous and heterogeneous photocatalysis. Reidel, Dordrecht

  2. Schiavello M (1988) Photocatalysis and environment. Trends and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  4. Augugliaro V, Loddo V, Marchi G, Palmisano L, lopezmunoz MJ (1997) J Catal 166:272

    Article  CAS  Google Scholar 

  5. Guha S, Ghosh K, Keeth JG, Ogale SB, Shinde SR, Simpson JR, Drew HD, Venkatesan T (2003) Appl Phys Lett 83:3296

    Article  CAS  Google Scholar 

  6. Weng HM, Yang XP, Dong JM, Mizuseki H, Kawasaki M, Kawazoe Y (2004) Phys Rev B 69:125219

    Article  Google Scholar 

  7. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Science 291:854

    Article  CAS  Google Scholar 

  8. Katagi T (2004) Rev Environ Contam Toxicol 182:1–195

    CAS  Google Scholar 

  9. Gomathi Devi L, Krishnaiah GM (1999) J Photochem Photobiol A: Chem 121:141–145

    Article  CAS  Google Scholar 

  10. Azaroff LV (1977) Introduction to solids, TMH edn. McGraw-Hill Inc., New York

  11. Prasad K, Bally Philippe AR, Schmid E, Lévy F, Benoit J, Barthou C, Benalloul P (1997) J Appl Phys 36:5696–5702

    Article  CAS  Google Scholar 

  12. Lee JD (1996) Concise inorganic chemistry, 5th edn. Chapmann and Hall Publication, London

    Google Scholar 

  13. Kutty TRN, Gomathi Devi L (1985) Mater Res Bull 20:793

    Article  CAS  Google Scholar 

  14. Fuller MP, Griffiths PR (1978) Anal Chem 5013:1906–1910

    Article  Google Scholar 

  15. Cardona M, Harbeke G (1964) Phys Rev 137A:1467

    Google Scholar 

  16. Fuller MP, Griffiths PR (1978) Anal Chem 50(13):1906–1910

    Article  CAS  Google Scholar 

  17. Kröger FA, Vink HJ (1956) Solid state physics. Academic Press, New York

    Google Scholar 

  18. Bernasik A, Radecka M, Rekas M, Sloma M (1993) Appl Surf Sci 65:240

    Article  Google Scholar 

  19. Mizushima K, Tanaka M, Asai A, Ilda S, Goodenough JB (1979) J Phys Chem Solids 40:1129

    Article  CAS  Google Scholar 

  20. Suda Y, Kawasaki H, Ueda T, Ohshima T (2004) Thin Solid Films 453–454:162

    Article  Google Scholar 

  21. Wawrzyniak B, Morawski AW, Tryba B (2006) Int J Photoener 2006:1–8

    Article  Google Scholar 

  22. Yoko XT, Kamiya K, Tanaka K (1990) J Mater Sci 25:3922

    Article  CAS  Google Scholar 

  23. Zhang J, Boyd I, Sullivan BJO, Hurley PK, Kelly PV, Senateur JP (2002) J Non-Cryst Solid 303:134

    Article  CAS  Google Scholar 

  24. Yamakata A, Aki Ishibashi T, Onishi H (2002) Bull Chem Soc Jpn 75:1019

    Article  CAS  Google Scholar 

  25. Jackson P, Parfitt GD (1971) Trans Faraday Soc 67:2469

    Article  CAS  Google Scholar 

  26. Maruska HP, Ghosh AK (1979) Solar Energy Mater 1:237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by UGC-Major Research Project (2007–2010), UGC-DRS, and UGC-FIST is greatly acknowledged. One of the author B. Narasimha Murthy wishes to acknowledge CMR Institute of Technology, Bangalore for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gomathi Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi Devi, L., Narasimha Murthy, B. Characterization of Mo Doped TiO2 and its Enhanced Photo Catalytic Activity Under Visible Light. Catal Lett 125, 320–330 (2008). https://doi.org/10.1007/s10562-008-9568-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9568-4

Keywords

Navigation