Skip to main content
Log in

CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts for Methanol Steam Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An as-synthesized 8.8wt% Pd/ZnO/Al2O3 catalyst was either pretreated under O2 at 773 K followed by H2 at 293 K or under H2 at 773 K to obtain, respectively, a supported metallic Pd° catalyst (Pd°/ZnO/Al2O3) or a supported PdZn alloy catalyst (PdZn/ZnO/Al2O3). Both catalysts were studied by CO adsorption using FTIR spectroscopy. For the supported PdZn alloy catalyst (PdZn/ZnO/Al2O3), exposure to a mixture of methanol and steam, simulating methanol steam reforming reaction conditions, does not change the catalyst surface composition. This implies that the active sites are PdZn alloy like structures. The exposure of the catalyst to an oxidizing environment (O2 at 623 K) results in the break up of PdZn alloy, forming a readily reducible PdO with its metallic form being known as much less active and selective for methanol steam reforming. However, for the metallic Pd°/ZnO/Al2O3 catalyst, FTIR results indicate that metallic Pd° can transform to PdZn alloy under methanol steam reforming conditions. These results suggest that PdZn alloy, even after an accidental exposure to oxygen, can self repair to form the active PdZn alloy phase under methanol steam reforming conditions. Catalytic behavior of the PdZn/ZnO/Al2O3 catalyst also correlates well with the surface composition characterizations by FTIR/CO spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DIREM/Industrie pétrolière en (2005) http://www.industrie.gouv.fr/energie/petrole/textes/explo-pro-monde05.html

  2. Brown LF (2001) Int J Hydrogen Energy 243:420–427

    Google Scholar 

  3. Rostrup-Nielsen JR (2001) Phys Chem Chem Phys 3:283–288

    Article  CAS  Google Scholar 

  4. Lindström B, Pettersson LJ (2001) Int J Hydrogen Energy 26:923–933

    Article  Google Scholar 

  5. Peters R, Düsterwald HG, Höhlein B (2000) J Power Sources 86:507–514

    Article  CAS  Google Scholar 

  6. Yong ST, Hidajat K, Kawi S (2004) J Power Sources 131: 91–95

    Article  CAS  Google Scholar 

  7. Lindström B, Pettersson LJ (2002) J Power Sources 106:264–273

    Article  Google Scholar 

  8. Takahashi K, Kobayashi H, Takezawa N (1985) Chem Lett 759–762

  9. Iwasa N, Mayanagi T, Nomura W, Arai M, Takezawa N (2003) Appl Catal A Gen 248:153–160

    Article  CAS  Google Scholar 

  10. Iwasa N, Yoshikawa M, Nomura W, Arai M (2005) Appl Catal A Gen 292:215–222

    Article  CAS  Google Scholar 

  11. Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Catal Lett 19:211–216

    Article  CAS  Google Scholar 

  12. Ranganathan ES, Bej SK, Thompson LT (2005) Appl Catal A Gen 289:153–162

    Article  CAS  Google Scholar 

  13. Takezawa N, Iwasa N (1997) Catal Today 36:45–56

    Article  CAS  Google Scholar 

  14. Suwa Y, Ito S-I, Kameoka S, Tomishige K, Kunimori K (2004) Appl Catal A Gen 267:9–16

    Article  CAS  Google Scholar 

  15. Iwasa N, Takezawa N (2003) Top Catal 22:215

    Article  CAS  Google Scholar 

  16. Agrell J, Bigersson H, Boutonnet M (2002) J Power Sources 106:249–257

    Article  CAS  Google Scholar 

  17. Pour V, Barton J, Benda A (1975) Collect Czech Chem Commun 40:2923

    CAS  Google Scholar 

  18. Barton J, Pour V (1980) Collect Czech Chem Commun 45:3402

    CAS  Google Scholar 

  19. Kobayashi H, Takezawa N, Minochi C (1981) J Catal 69:487

    Article  CAS  Google Scholar 

  20. Takahashi H, Takezawa N, Kobayashi H (1982) Appl Catal 2:363

    Article  CAS  Google Scholar 

  21. Santacesaria E, Carrà S (1983) Appl Catal 5:345

    Article  CAS  Google Scholar 

  22. Jiang CJ, Trimm MS, Wainwright NW (1993) Appl Catal A Gen 97:145

    Article  CAS  Google Scholar 

  23. Breen JP, Ross JRH (1999) Catal Today 51:521

    Article  CAS  Google Scholar 

  24. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Appl Catal A Gen 179:21–29

    Article  CAS  Google Scholar 

  25. Agarwal V, Patel S, Pant KK (2005) Appl Catal A Gen 279:155–164

    Article  CAS  Google Scholar 

  26. Yu X, Tu S-T, Wang Z, Qi Y (2005) J Power Sources 150:57–66

    Article  CAS  Google Scholar 

  27. Frank B, Jentoft FC, Soerijanto H, Kröhnert J, Schlögl R, Schomäcker R (2007) J Catal 246:177–192

    Article  CAS  Google Scholar 

  28. Mastalir A, Patzkó A, Frank B, Schomäcker R, Ressler T, Schlögl R (2007) Catal Commun 8:1684–1690

    Article  CAS  Google Scholar 

  29. Twigg M, Spencer M (2003) Top Catal 22:192

    Article  Google Scholar 

  30. Hong C-T, Yeh C-T, Yu F-H (1989) Appl Catal 48:385–396

    Article  CAS  Google Scholar 

  31. Kim C-H, Lee JS, Trimm DL (2003) Top Catal 22:319

    Article  CAS  Google Scholar 

  32. Cao C, Xia G, Holladay J, Jones E, Wang Y (2004) Appl Catal A Gen 262:19–29

    Article  CAS  Google Scholar 

  33. Xia G, Holladay JD, Dagle RA, Jones EO, Wang Y (2005) Chem Eng Technol 28:515

    Article  CAS  Google Scholar 

  34. Valdés-Solís T, Marbán G, Fuertes AB (2006) Catal Today 116:354–360

    Article  CAS  Google Scholar 

  35. Lenarda M, Moretti E, Storaro L, Patrono P, Pinzari F, Rodríguez-Casellón E, Jiménez-López A, Busca G, Finocchio E, Montanari T, Frattini R (2006) Appl Catal A Gen 312:220–228

    Article  CAS  Google Scholar 

  36. Dagle RA, Chin Y-H, Wang Y (2007) Top Catal. doi:10.1007/s11244-007-9009-4

  37. Palo DR, Dagle RA, Holladay JD (2007) Chem Rev accepted

  38. Jeroro E, Lebarbier V, Datye A, Wang Y, Vohs J-M (2007) Surf Sci 601:5546–5554

    Article  CAS  Google Scholar 

  39. Iwasa N, Masuda S, Ogawa N, Takezawa N (1995) Appl Catal A Gen 125:145–157

    Article  CAS  Google Scholar 

  40. Hu J, Wang Y, Vanderwiel D, Chin C, Palo D, Rozmiarek R, Dagle R, Cao J, LHolladay J, Baker E (2003) Chem Eng J 93:55–60

    Article  CAS  Google Scholar 

  41. Chin Y-H, Dagle R, Hu J, Dohnalkova AC, Wang Y (2002) Catal Today 77:79–88

    Article  CAS  Google Scholar 

  42. Karim A, Conant T, Datye A (2006) J Catal 243:420–427

    Article  CAS  Google Scholar 

  43. Karim A (2006) PhD Thesis. University of New Mexico, New Mexico

  44. Chin Y-H, Wang Y, Dagle R, Li XS (2003) Fuel Process Technol 83:193–201

    Article  CAS  Google Scholar 

  45. Conant T, Karim A, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, Datye A (2007) J Catal submitted

  46. Skotak M, Karpinski Z, Juszczyk W, Pielaszek J, Kepinski L, Kazachkin DV, Kovalchuk VI, d’Itri JL (2004) J Catal 227:11–25

    Article  CAS  Google Scholar 

  47. Iwasa N, Ogawa N, Masuda S, Takezawa N (1998) Bull Chem Soc Jpn 71:1451–1455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory in Richland, WA. We greatly acknowledge funding for this work provided by the U.S. Department of Energy (Grant no. DE-FG02-05ER15712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebarbier, V., Dagle, R., Conant, T. et al. CO/FTIR Spectroscopic Characterization of Pd/ZnO/Al2O3 Catalysts for Methanol Steam Reforming. Catal Lett 122, 223–227 (2008). https://doi.org/10.1007/s10562-008-9407-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9407-7

Keywords

Navigation