Skip to main content
Log in

Transesterification of Dimethylcarbonate and Phenol Over Silica Supported TiO2 and Ti-MCM 41 Catalysts: Structure Insensitivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Silica-supported titanium dioxide (TiO2/SiO2) and Ti-MCM 41 catalysts have been used for transesterification of dimethylcarbonate (DMC) and phenol to methylphenylcarbonate (MPC). The structure and the chemical state of titanium species in TiO2/SiO2 and Ti-MCM 41 have been investigated by means of X-ray diffraction (XRD), X-ray absorption near edge structure (XANES) for Ti K-edge and X-ray photoelectron spectroscopy (XPS). To understand the role of pore size on the activity of catalysts, different pore size silica supports (Q-series) were utilized in TiO2/SiO2 catalysts. Similarly, to understand the effect of Ti symmetry on the activity of catalysts, Ti-MCM 41 was used with different Ti-loadings. It was observed that the Ti surface area was an only important factor to achieve highest activity. In case of Ti-MCM 41 catalysts, as the Ti-loading increased octahedral symmetry increased and tetrahedral symmetry decreased. But, turnover rates based on the surface Ti atoms were independent of the Ti symmetry. They are also similar to those obtained for TiO2/SiO2 catalysts. Showing that transesterification of DMC and phenol over Ti-based catalysts is a structure insensitive reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Komiya K, Fukuoka S, Aminaka M, Hasegawa K, Hachiya H, Okamoto H, Watanabe T, Yoneda H, Fukawa I, Dozon T (1996) Green chemistry: designing chemistry for the environment. American Chemical Society, Washington DC. p 20

    Google Scholar 

  2. Chemistry in Britain (1994) 30:970

  3. Gong J, Ma X, Wang S (2007) Appl Catal A 316:1

    Article  CAS  Google Scholar 

  4. Kim WB, Joshi UA, Lee JS (2004) Ind Eng Chem Res 43:1897

    Article  CAS  Google Scholar 

  5. Shaikh AG, Sivaram S (1996) Chem Rev 96:951

    Article  CAS  Google Scholar 

  6. Song HY, Park ED, Lee JS (2000) J Mol Catal A 154:243

    Article  CAS  Google Scholar 

  7. Fu Z-H, Ono Y (1997) J Mol Catal A 118:293

    Article  CAS  Google Scholar 

  8. Cao M, Meng Y, Lu Y (2005) Catal Commun 6:802

    Article  CAS  Google Scholar 

  9. Zhou WQ, Zhao XQ, Wang YJ, Zhang JY (2004) Appl Catal A 260:19

    Article  CAS  Google Scholar 

  10. Mei FM, Pei Z, Li GX (2004) Org Process Res Dev 8:372

    Article  CAS  Google Scholar 

  11. Fukuoka S, Deguchi R, Tojo M (1992) US Patent 5166393

  12. Shaikh AG, Sivaram S (1992) Ind Eng Chem Res 31:1167

    Article  CAS  Google Scholar 

  13. Lee H, Kim SJ, Ahn BS, Lee WK, Kim HS (2003) Catal Today 87:139

    Article  CAS  Google Scholar 

  14. Kim WB, Lee JS (1999) Catal Lett 59:83

    Article  CAS  Google Scholar 

  15. Kim WB, Lee JS (1999) J Catal 185:307

    Article  CAS  Google Scholar 

  16. Kim WB, Kim YG, Lee JS (2000) Appl Catal A 194–195:403

    Google Scholar 

  17. Rhee CH, Lee JS (1997) Catal Today 38:213

    Article  CAS  Google Scholar 

  18. Newville MJ (2001) J Synchrotron Rad 8:322

    Article  CAS  Google Scholar 

  19. Bordiga S, Coluccia S, Lamberti C, Marchese L, Zecchina A, Boscherini F, Buffa F, Genoni F, Leofanti G, Petrini G, Vlaic G (1994) J Phys Chem 98:4125

    Article  CAS  Google Scholar 

  20. Kim WB, Choi SH, Lee JS (2000) J Phys Chem B 104:8670

    Article  CAS  Google Scholar 

  21. Kim WB, Choi SH, Lee JS (2001) J Phys Chem B 105:6274

    Article  CAS  Google Scholar 

  22. Lee JS, Kim WB, Choi SH (2001) J Synchrotron Rad 8:163

    Article  CAS  Google Scholar 

  23. Greegor RB, Lytle FW, Sandstrom DR, Wong J, Schultz P (1983) J Non-Cryst Sol 55:27

    Article  CAS  Google Scholar 

  24. Sandstrom DR, Lytle FW, Wei PSP, Greegor RB, Wong J, Schultz P (1980) J Non-Cryst Sol 41:201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support of the Korea Ministry of Education and Human Resources Development through the BK 21 program. Experiments at PAL were supported in part by MOST and POSTECH. UAJ thanks to Dr. Nark Eon Sung for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, U.A., Choi, S.H., Jang, J.S. et al. Transesterification of Dimethylcarbonate and Phenol Over Silica Supported TiO2 and Ti-MCM 41 Catalysts: Structure Insensitivity. Catal Lett 123, 115–122 (2008). https://doi.org/10.1007/s10562-008-9403-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9403-y

Keywords

Navigation