Skip to main content

Advertisement

Log in

Steam reforming of ethanol on Ni–CeO2–ZrO2 catalysts: Effect of doping with copper, cobalt and calcium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Steam reforming (SR) and oxidative steam reforming (OSR) of ethanol were investigated over undoped and Cu, Co and Ca doped Ni/CeO2–ZrO2 catalyst in the temperature range of 400–650 °C. The nickel loading was kept fixed at 30 wt.% and the loading of Cu and Co was varied from 2 to 10 wt% whereas the Ca loading was varied from 5 to 15 wt.%. The catalysts were characterized by various techniques, such as surface area, temperature programmed reduction, X-Ray diffraction and H2 chemisorption. For Cu and Co doped catalyst, CuO and Co3O4 phases were detected at high loading whereas for Ca doped catalyst, no separate phase of CaO was found. The reducibility and the metal support interactions were different for doped catalysts and varied with the amount and nature of dopants. The hydrogen uptake, nickel dispersion and nickel surface area was reduced with the metal loading and for the Co loaded catalysts the dispersion of Ni and nickel surface area was very low. For Cu and Ca doped catalysts, the activity was increased significantly and the main products were H2, CO, CH4 and CO2. However, the Co doped catalysts showed poor activity and a relatively large amount of C2H4, C2H6, CH3CHO and CH3COCH3 were obtained. For SR, the maximum enhancement in catalytic activity was obtained with in the order of NCu5. For Cu–Ni catalysts, CH3CHO decomposition and reforming reaction was faster than ethanol dehydrogenation reaction. Addition of Cu and Ca enhanced the water gas shift (WGS) and acetaldehyde reforming reactions, as a result the selectivity to CO2 and H2 were increased and the selectivity to CH3CHO was reduced significantly. The maximum hydrogen selectivity was obtained for Catalyst N (93.4%) at 650 °C whereas nearly the same selectivity to hydrogen (89%) was obtained for NCa10 catalyst at 550 °C. In OSR, the catalytic activity was in the order N > NCu5 > NCa15 > NCo5. In the presence of oxygen, oxidation of ethanol was appreciable together with ethanol dehydrogenation. For SR reaction, the highest hydrogen yield was obtained on the undoped catalyst at 600 °C. However, with calcium doping the hydrogen yields are higher than the undoped catalyst in the temperature range of 400–550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Marino F., Boveri M., Baronetti G., Laborde M. (2001) Int. J. Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  2. Breen J.P., Burch R., Coleman H.M. (2002) Appl. Catal. B: Environ. 39:65

    Article  CAS  Google Scholar 

  3. Liguras D.K., Kondarides D.I., Verykios X.E. (2003) Appl.Catal. B: Environ. 43:345

    Article  CAS  Google Scholar 

  4. Goula M.A., Kontou S.K., Tasiakaras P.E. (2004) Appl. Catal. B: Environ. 49:135

    Article  CAS  Google Scholar 

  5. Fatsikostas A.N., Kondarides D.I., Verykios X.E. (2002) Catal. Today 75:145

    Article  CAS  Google Scholar 

  6. Vaidya P.D., Rodrigues A.E. (2006) Chem. Eng. J. 117:39

    Article  CAS  Google Scholar 

  7. Haryanto A., Fernando S., Murali N., Adhikari S. (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  8. Yang Y., Ma J., Wu F. (2006) Int. J. Hydrogen Energy 31(7):877

    Article  CAS  Google Scholar 

  9. Sun J., Qiu X.P., Wu F., Zhu W.T. (2005) Int. J. Hydrogen Energy 30:437

    Article  CAS  Google Scholar 

  10. Frusteri F., Freni S., Chiodo V., Spadaro L., Di Blasi O., Bonura G., Cavallaro S. (2004) Appl. Catal. A: Gen. 270:1

    Article  CAS  Google Scholar 

  11. Frusteri F., Freni S., Chiodo V., Donato S., Bonura G. and Cavallaro S. (2006) Int. J Hydrogen Energy 31:2193

    Article  CAS  Google Scholar 

  12. Fatsikostas A.N., Verykios X.E. (2004) J. Catal. 225:439

    Article  CAS  Google Scholar 

  13. Aupretre F., Descorme C., Duprez D. (2002) Catal. Commun. 3:263

    Article  CAS  Google Scholar 

  14. P. Biswas and D. Kunzru, Int. J. Hydrogen Energy (2006), doi: 10.1016/j.ijhydene.2006.09.031

  15. Sayle T.X.T., Parker S.C., Catlow C.R.A. (2004) Surf. Sci. 316:329

    Article  Google Scholar 

  16. Leitenburg C., Trovarelli A., Llorca J., Cavani F., Bini G. (1996) Appl. Catal. A: Gen. 139:161

    Article  Google Scholar 

  17. Marino F.J., Cerrella E.G., Duhalde S., Jobbagy M., Laborde M.A. (1998) Int. J. Hydrogen Energy 23(12):1095

    Article  CAS  Google Scholar 

  18. Marino F., Boveri M., Baronetti G., Laborde M. (2001) Int. J. Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  19. Marino F., Baronetti G., Jobbagy M., Laborde M. (2003) Appl. Catal. A: Gen. 238:41

    Article  CAS  Google Scholar 

  20. Marino F., Boveri M., Baronetti G., Laborde M. (2004) Int. J. Hydrogen Energy 29:67

    Article  CAS  Google Scholar 

  21. Lisboa J.S., Santos D.C.R.M., Passos F.B., Noronha F.B. (2005) Catal. Today 101:15

    Article  CAS  Google Scholar 

  22. Youn M.H., Seo J.G., Kim P., Kim J.J., Lee H.I., Song I.K. (2006) J. Power Sources 162(2):1270

    Article  CAS  Google Scholar 

  23. Velu S., Suzuki K., Vijayaraj M., Barman S., Gopinath C.S. (2005) Appl. Catal. B: Environ 55:287

    Article  CAS  Google Scholar 

  24. Fierro V., Akdim O., Provendier H., Mirodatos C. (2005) J. Power Sources 145:659

    Article  CAS  Google Scholar 

  25. Lee J.H., Lee E.G., Joo O.S., Jung K.D. (2004) Appl. Catal. A: Gen 269:1

    Article  CAS  Google Scholar 

  26. Huang T.J., Yu T.C., Jhao S.Y. (2006) Ind. Eng. Chem. Res. 45:150

    Article  CAS  Google Scholar 

  27. Hu X., Lu G. (2007) J. Mol. Catal. A: Chem. 261:43

    Article  CAS  Google Scholar 

  28. Cavallaro S., Chiodo V., Vita A., Freni S. (2003) J. Power Sources 123:10

    Article  CAS  Google Scholar 

  29. Klouz V., Fierro V., Denton P., Katz H., Lisse J.P., Bouvot-Mauduit S., Mirodatos C. (2002) J. Power sources 105:26

    Article  CAS  Google Scholar 

  30. Vesselli E., Comelli G., Rosei R., Freni S., Frusteri F., Cavallaro S. (2005) Appl. Catal. A: Gen 281:139

    Article  CAS  Google Scholar 

  31. Arias A.M., Garcia M.F., Ballesteros V., Salamanca L.N., Conesa J.C., Otero C., Soria J. (1999) Langmuir 15:4796

    Article  Google Scholar 

  32. Batista M.S., Santos R.K.S., Assaf E.M., Assaf J.M., Ticianelli E.A. (2003) J. Power Sources 124:99

    Article  CAS  Google Scholar 

  33. Araya P., Guerrero S., Robertson J., Gracia F.J. (2005) Appl. Catal. a: Gen. 283:217

    Article  CAS  Google Scholar 

  34. Papavasiliou J., Avgouropoulos G., Ioannides T. (2007) Appl. Catal B: Environ. 69:226

    Article  CAS  Google Scholar 

  35. Zhang B., Tang X., Li Y., Cai W., Xu Y., Shen W. (2006) Catal. Commun. 7:367

    Article  CAS  Google Scholar 

  36. Batista M.S., Assaf E.M., Assaf J.M., Ticianelli E.A. (2006) Int. J. Hydrogen Energy 31:1204

    Article  CAS  Google Scholar 

  37. Sinfelt J.H., Yates D.J.C. (1967) J. Catal. 8:82

    Article  CAS  Google Scholar 

  38. Comas J., Marino F., Laborde M., Amadeo N. (2004) Chem. Eng. J. 98:61

    Article  CAS  Google Scholar 

  39. Huang T.J., Jhao S.Y. (2006) Appl. Catal. A: Gen. 302:325

    Article  CAS  Google Scholar 

  40. Huang T.J., Yu T.C., Jhao S.Y. (2006) Ind. Eng. Chem. Res. 45:150

    Article  CAS  Google Scholar 

  41. Patel S., Pant K.K. (2006) J. Power Sources 159:139

    Article  CAS  Google Scholar 

  42. Yao C.Z., Wang L.C., Liu Y.M., Wu G.S., Cao Y., Dai W.L., He H.Y., Fan K.N. (2006) Appl. Catal. A: Gen. 297:151

    Article  CAS  Google Scholar 

  43. Suetsuna T., Suenaga S., Fukasawa T. (2004) Appl. Catal. A: Gen. 276:275

    Article  CAS  Google Scholar 

  44. Zhang Z., Baerns M. (1991) Appl. Catal. 75:299

    Article  CAS  Google Scholar 

  45. Xu G., Murakami T., Suda T., Matsuzawa Y., Tani H., Mito Y., Ashizawa M. (2006) AIChE 52(10):3555

    Article  CAS  Google Scholar 

  46. Chang J.S., Hong D.Y., Li X., Park S.E. (2006) Catal. Today 115:186

    Article  CAS  Google Scholar 

  47. Freni S., Cavallaro S., Mondello N., Spadaro L., Frusteri F. (2003) Catal. Commun. 4:259

    Article  CAS  Google Scholar 

  48. Llorca J., Homs N., Sales J., Piscina P.R. (2002) J. Catal. 209:306

    Article  CAS  Google Scholar 

  49. Llorca J., Piscina P.R., Dalmon J.A., Sales J., Homs N. (2003) Appl. Catal. B: Environ. 43:355

    Article  CAS  Google Scholar 

  50. Cavallaro S., Chiodo V., Freni S., Mondello N., Frusteri F. (2003) Appl. Catal. A: Gen 249:119

    Article  CAS  Google Scholar 

  51. Cordi E.M., O’Neill P.J., Falconer J.L. (1997) Appl. Catal. B: Environ. 14(1–2):23

    Article  CAS  Google Scholar 

  52. Laosiripojana N., Assabumrungrat S. (2006) Appl. Catal. B: Environ. 66:29

    Article  CAS  Google Scholar 

  53. Hu Y.H., Ruckenstein E. (1996) Catal. Lett. 42:145

    Article  Google Scholar 

  54. Nichio N., Casella M., Ferretti O., González M., Nicot C., Moraweck B., Frety R. (1996) Catal. Lett. 42:65

    Article  CAS  Google Scholar 

  55. Dias J.A.C., Assaf J.M. (2003) Catal. Today 85:59

    Article  CAS  Google Scholar 

  56. Frusteri F., Freni S., Chiodo V., Spadaro L., Di Blasi O., Bonura G., Cavallaro S. (2004) Appl. Catal. A: Gen. 270:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kunzru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, P., Kunzru, D. Steam reforming of ethanol on Ni–CeO2–ZrO2 catalysts: Effect of doping with copper, cobalt and calcium. Catal Lett 118, 36–49 (2007). https://doi.org/10.1007/s10562-007-9133-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9133-6

Keywords

Navigation