Skip to main content

Advertisement

Log in

Decellularization of caprine esophagus using fruit pericarp extract of Sapindus mukorossi

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson’s trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Abe Y, Krimm S (1972) Normal vibrations of crystalline polyglycine I. Biopolymers 11(9):1817–1839

    Article  CAS  PubMed  Google Scholar 

  • Ahim A, Hazwani A, Shaban M (2019) Biomechanical and Structural properties of aortic scaffolds decellularized by sonication decellularization system. J Cardiovasc Med Therapy 2(1–2):1–9

    Google Scholar 

  • Armentano RL, Levenson J, Barra JG et al (1991) Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol 260:H1870–H1877

    CAS  PubMed  Google Scholar 

  • Azhim A, Syazwani N, Morimoto Y et al (2014) The use of sonication treatment to decellularize aortic tissues for preparation of bioscaffolds. J Biomater Appl 29(1):130–141

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan S, Varughese S, Deshpande AP (2006) Micellar characterisation of saponin from Sapindus mukorossi. Tenside, Surfactants, Deterg 43(5):262–268

    Article  CAS  Google Scholar 

  • Bhrany AD, Beckstead BL, Lang TC et al (2006) Development of an esophagus acellular matrix tissue scaffold. Tissue Eng 12:319–330

    Article  CAS  PubMed  Google Scholar 

  • Choi YC, Choi JS, Kim BS (2012) Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods 18(11):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl SL, Koh J, Prabhakar V, Niklason LE (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12(6):659–666

    Article  PubMed  Google Scholar 

  • Divya PV, Nandakumar K (2006) Local drug delivery-periocol in periodontics. Trends Biomater Artif Organs 19(2):74–80

    Google Scholar 

  • Doyle BB, Bendit EG, Blout ER (1975) Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 14(5):937–957

    Article  CAS  PubMed  Google Scholar 

  • Du M, Huang S, Zhang J et al (2014) Isolation of total saponins from Sapindus mukorossi Gaerth. Open J For 4(1):24

    Google Scholar 

  • Du M, Huang S, Zhang J et al (2015) Toxicolological test of saponins from Sapindus mukorossi Gaerth. Open J For 5(7):749

    Google Scholar 

  • Gangwar AK, Sharma AK, Kumar N et al (2006) Acellular dermal graft for repair of abdominal wall defects in rabbits. J S Afr Vet Assoc 77(2):79–85

    Article  CAS  PubMed  Google Scholar 

  • Gangwar AK, Kumar N, Sharma AK et al (2013) Bioengineered acellular dermal matrix for the repair of full thickness skin wounds in rats. Trends Biomater Artif Organs 27(2):67–80

    Google Scholar 

  • Gangwar AK, Kumar N, Khangembam SD, Kumar V, Singh R (2015) Primary chicken embryo fibroblasts seeded acellular dermal matrix (3-D ADM) improve regeneration of full thickness skin wounds in rats. Tissue Cell 47(3):311–322

    Article  CAS  PubMed  Google Scholar 

  • George B, Shanmugam S (2014) Phytochemical screening and antimicrobial activity of fruit extract of Sapindus mukorossi. Int J Current Microbiol Appl Sci 3:604–611

    Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Goyal RP, Khangembam SD, Gangwar AK et al (2021) Development of decellularized aortic scaffold for regenerative medicine using Sapindus mukorossi fruit pericarp extract. Micron 142:102997

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J (2017) Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols 2017(4): pdb-prot093450.

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):231–258

    Article  PubMed  Google Scholar 

  • Gupta SK, Dinda AK, Potdar PD, Mishra NC (2013) Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications. Mater Sci Eng C 33(7):4032–4038

    Article  CAS  Google Scholar 

  • Köse MD, Bayraktar O (2016) Extraction of saponins from soapnut (Sapindus Mukorossi) and their antimicrobial properties. World J Res Rev 2(5):89–93

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophasetitania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res Part A 78A(4):798–807

    Article  CAS  Google Scholar 

  • Lu X, Gregersen H (2001) Regional distribution of axial strain and circumferential residual strain in the layered rabbit oesophagus. J Biomech 34:225–233

    Article  CAS  PubMed  Google Scholar 

  • Luc G, Durand M, Collet D et al (2014) Esophageal tissue engineering. Expert Rev Med Devices 11(2):225–241

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L, Liu Y, Mullins B (2009) Strain-specific viral properties of variant Creutzfeldt-Jakob disease (vCJD) are encoded by the agent and not by host prion protein. J Cell Biochem 106(2):220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa A, Sudisha J, El-Sayed M (2013) Aginoside saponin, a potent antifungal compound, and secondary metabolite analyses from Allium nigrum L. Phytochem Lett 6(2):274–280

    Article  CAS  Google Scholar 

  • Muyonga JH, Cole CGB, Duodu KG (2004) Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem 85(1):81–89

    Article  CAS  Google Scholar 

  • Ozeki M, Narita Y, Kagami H (2006) Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res Part A 79:771–778

    Article  Google Scholar 

  • Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Biores Technol 101(10):3737–3742

    Article  CAS  Google Scholar 

  • Petersen TH, Calle EA, Zhao L (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GK, Enwemeka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29(3):225–229

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Grinnell F (2007) Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev 59(13):1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simões IN, Vale P, Soker S (2017) Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep 7(1):1–13

    Article  Google Scholar 

  • Stavropoulou EA, Dafalias YF, Sokolis DP (2009) Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling. J Biomech 42:2654–2663

    Article  PubMed  Google Scholar 

  • Syed O, Walters NJ, Day RM (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 10(12):5043–5054

    Article  CAS  PubMed  Google Scholar 

  • Totonelli G, Maghsoudlou P, Georgiades F (2013) Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int 29(1):87–95

    Article  PubMed  Google Scholar 

  • Wang J, Sun X, Zhang Z et al (2019) Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilage tissue engineering. Mater Sci Eng C 94:35–44

    Article  CAS  Google Scholar 

  • Wu KJ, Wang CY, Lu HK (2004) Effect of glutaraldehyde on the humoral immunogenicity and structure of porcine dermal collagen membranes. Arch Oral Biol 49(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Fung TC, Chian KS, Chong CK (2006) Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model. J Biomech Eng 128:409–418

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen C, Guo Z et al (2018) SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskelet Disord 19(1):220

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Zhang Y (2012) Mechanical evaluation of decellularized porcine thoracic aorta. J Surg Res 175(2):359–368

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This is a part of M.V.Sc. student.

Funding

This work was supported by the Vice chancellor, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya (UP)-India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Gangwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, R.P., Gangwar, A.K., Khangembam, S.D. et al. Decellularization of caprine esophagus using fruit pericarp extract of Sapindus mukorossi. Cell Tissue Bank 23, 79–92 (2022). https://doi.org/10.1007/s10561-021-09916-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-021-09916-w

Keywords

Navigation