Skip to main content
Log in

Development and Application of a Logistic-Based Systolic Model for Hemodynamic Measurements Using the Esophageal Doppler Monitor

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

The esophageal Doppler monitor (EDM) is a clinically useful device for minimally invasive assessment of cardiac output, preload, afterload, and contractility. An empirical model, based upon the logistic function, has been developed. Use of this model illustrates how the EDM could estimate the net effect of aortic and non-aortic contributions to inertia, resistance, and elastance within real time. This is based on an assumed mechanical impedance conceptually resembling that of a series arrangement of a spring, mass, and dashpot. In addition, when used with an invasive radial arterial catheter, the EDM may also estimate aortic pulse wave velocity, as well as aortic characteristic impedance, and characteristic volume. Approximations of left ventricular stroke work and stroke power can also be made. Furthermore, the effects of inertia, resistance, and elastance, on mean blood pressure during systole, can be quantified. These additional parameters could offer insight for clinicians, as well as researchers, and may be beneficial in further examining and utilizing clinical hemodynamics with the EDM. These additional measurements also underscore the need to integrate the EDM with existing and future monitoring equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Society of Anesthesiologists Task Force on Guidelines for Pulmonary Artery Catheterization. Practice Guidelines for Pulmonary Artery Catheterization. Anesthesiology. 2003;99(4):988–1014.

    Google Scholar 

  • Atlas G. Can the esophageal Doppler monitor be used to clinically evaluate peak left ventricular dp/dt? Cardiovasc Eng Intl J. 2002;2(1):1–6

    Article  Google Scholar 

  • Atlas G, Mort T. Placement of the esophageal Doppler ultrasound monitor probe in awake patients. Chest. 2001;119:319.

    Article  PubMed  CAS  Google Scholar 

  • Beltrami E. Mathematics for dynamic modeling. San Diego, CA: Academic Press; 1987.

    Google Scholar 

  • Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–39.

    PubMed  CAS  Google Scholar 

  • Boulnois JLG, Pechoux T. Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000. J Clin Monit Comput. 2000; 16:127–40.

    Article  PubMed  CAS  Google Scholar 

  • Bove AA, Kreulen TH, Spann JF. Computer analysis of left ventricular dynamic geometry in man. Am J Cardiol. 1978;41(7):1239–48

    Article  PubMed  CAS  Google Scholar 

  • Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proc R Soc Lond B Contain Paper Biol Charact. 1922;93(652):298–306.

    Google Scholar 

  • Bulpitt CJ, Rajkumar C, Cameron JD. Vascular compliance as a measure of biological age. J Am Geriatr Soc. 1999;47(6):657–63.

    PubMed  CAS  Google Scholar 

  • Carney WI, Rheinlander HF, Cleveland RJ. Control of acute aortic dissection. Surgery. 1975;78:114–20.

    PubMed  Google Scholar 

  • Chen CH, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Circulation. 1997;95:1827–36.

    PubMed  CAS  Google Scholar 

  • Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 2004;30:2060–66.

    Article  PubMed  Google Scholar 

  • Davies JI, Band MM, Pringel S, Ogston S, Struthers AD. Peripheral blood pressure measurement is as good as applantion tonometry at predicting ascending aortic blood pressure. J Hypertens. 2003;21:571–6.

    Article  PubMed  CAS  Google Scholar 

  • De Hert SG, Robert D, Cromheecke S, et al. Evaluation of left ventricular function in anesthesized patients using femoral artery dP/dt(max). J Cardiothoracic Vasc Anesth. 2006;20(3):325–30.

    Article  Google Scholar 

  • deSimone G, Roman MJ, Koren MJ, Mensah GA, Ganau A, Devereux RB. Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension. Hypertension. 1999;33(3):800–5.

    CAS  Google Scholar 

  • DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Annl Thorac Surg. 2000;69(6):1782–6.

    Article  CAS  Google Scholar 

  • Dodd TEL. Nasal insertion of the oesophageal Doppler probe. Anaesthesia. 2002;57(4):412.

    Article  PubMed  CAS  Google Scholar 

  • Domino KB, Bowdle TA, Posner KL, Spitellie PH, Lee LA, Cheney FW. Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology. 2004;100(6):1411–8.

    Article  PubMed  Google Scholar 

  • DuBourg O, Jondeau G, Beauchet A, Hardy A, Bourdarias JP. Doppler-derived aortic maximal acceleration: a reliable index of left ventricular systolic function. Chest. 1993;103(4):1064–7.

    Article  PubMed  CAS  Google Scholar 

  • English JD, Moppett IK. Evaluation of trans-oesophageal Doppler probe in awake patients. Anaesthesia. 2005;60:712–26.

    Article  Google Scholar 

  • Feldman LS, Anidjar M, Metrakos P, Stanbridge D, Fried GM, Carli F. Optimization of cardiac preload during laparoscopic donor nephrectomy: a preliminary study of central venous pressure versus esophageal Doppler monitoring. Surg Endosc. 2004;18(3):412–6.

    Article  PubMed  CAS  Google Scholar 

  • Gan TJ, Soppitt A, Maroof M et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–26.

    Article  PubMed  Google Scholar 

  • Gardin JM, Davidson DM, Rohan MK, Butman S, Knoll M, Garcia R, Dubria S, Gardin SK, Henry WL. Relationship between age, body size, gender, and blood pressure and Doppler flow measurements in the aorta and pulmonary artery. Am Heart J. 1987;113:101–9.

    Article  PubMed  CAS  Google Scholar 

  • Groenink M, de Roos A, Mulder BJM, Spaan JAE, van der Wall EE. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol. 1998;82(2):203–8.

    Article  PubMed  CAS  Google Scholar 

  • Hinghofer-Szalkay H. Method of high-precision microsample blood and plasma densitometry. J Appl Physiol. 1986;60(3):1082–8.

    PubMed  CAS  Google Scholar 

  • Hopkins KD, Lehmann ED, Gosling RG (1994) Aortic compliance measurements: a non-invasive indicator of atherosclerosis? Lancet. 1994;343(8911):1447.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh KS, Chang CK, Chang KC, Chen HI. Effect of loading conditions on peak aortic flow velocity and its maximal acceleration. Proc Natl Sci Council Repub China B Life Sci. 1991;15(3):165–70.

    CAS  Google Scholar 

  • Kreyszig E. Advanced engineering mathematics. 8th ed. New York, NY: John Wiley & Sons; 1999.

    Google Scholar 

  • Kumar A, Anel R, Bunnell E, et al. Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Critic Care. 2004; 8(3):R128–36.

    Article  Google Scholar 

  • Lafanechere A, Albaladejo P, Raux M, et al. Cardiac output measurements during infrarenal aortic surgery: echo-esophageal Doppler versus thermodilution catheter. J Cardiothor Vasc Anesth. 2006;20(1):26–30.

    Article  Google Scholar 

  • Latham RD, Westerhof N, Sipkema P, et al. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.

    PubMed  CAS  Google Scholar 

  • Lehmann ED. Clinical value of aortic pulse-wave velocity measurement. Lancet. 1999;354(9178):528–9.

    Article  PubMed  CAS  Google Scholar 

  • Levy N. Extending the oesophageal Doppler into the perioperative period. Anaesthesia 2001;56(11):1123–24.

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ting CT, Zhu S, Yin FCP. Aortic compliance in human hypertension. Hypertension. 1989;14:129–36.

    PubMed  CAS  Google Scholar 

  • Madan AK, UyBarreta VV, Aliabadi-Wahle S, Jesperson R, Hartz RS, Flint LM, Steinberg SM. Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma Injury Infect Critic Care. 1999;46(4):607–11.

    Article  CAS  Google Scholar 

  • Matsubara H, Araki J, Takaki M, Nakagawa ST, Suga H. Logistic characterization of left ventricular isovolumic pressure-time curve. Jpn J Physiol. 1995;45:535–52.

    Google Scholar 

  • McEniery CM, Wallace YS, Maki-Petaja K, et al. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension 2005;46(1):221–6.

    Article  PubMed  CAS  Google Scholar 

  • Milnor WR. Hemodynamics. 2nd ed. Baltimore, MD: Williams & Wilkens; 1989.

    Google Scholar 

  • Mitchell GF, Lacourciere Y, Ouellet JP, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension. The role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  • Mowat DH, Haites NE, Rawles JM. Aortic blood velocity measurement in healthy adults using a simple ultrasound technique. Cardiovasc Res. 1983;17(2):75–80.

    Article  PubMed  CAS  Google Scholar 

  • Nichols W, O’Rourke MF. McDonald’s blood flow in arteries. 5th ed. London, UK: Hodder Arnold; 2005.

    Google Scholar 

  • Noordergraaf A. Circulatory system dynamics. New York, NY: Academic Press; 1978.

    Google Scholar 

  • Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    Article  PubMed  CAS  Google Scholar 

  • Poeze M, Ramsay G, Greve JW, Singer M. Prediction of postoperative cardiac surgical morbidity and organ failure within 4 hours of intensive care unit admission using esophageal Doppler ultrasonography. Critic Care Med. 1999;27(7):1288–94.

    Article  CAS  Google Scholar 

  • Polanczyk CA, Rohde LE, Goldman L, Cook EF, Thomas EJ, Marcantonio ER, Mangione CM, Lee TH. Right heart catheterization and cardiac complications in patients undergoing noncardiac surgery. JAMA. 2001;286(3):309–14.

    Article  PubMed  CAS  Google Scholar 

  • Prokop EK, Palmer RF, Wheat MW. Hydrodynamic forces in dissecting aneurysms. Circ Res. 1970;27:121–7.

    PubMed  CAS  Google Scholar 

  • Roeck M, Jakob SM, Boehlen T, et al. Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med. 2003;29:1729–35.

    Article  PubMed  Google Scholar 

  • Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyretiz RE, Reichek N. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol. 2001;38:1123–9.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg DM, Tuman KJ. Pulmonary artery catheter: what does the literature actually tell us? Intl Anesthesiol Clin. 2000;38(4):171–87.

    Article  CAS  Google Scholar 

  • Sandham JD, Hull RD, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. NEJM. 2003;348(1):5–14.

    Article  PubMed  Google Scholar 

  • Schertel ER. Assessment of left-ventricular function. Thorac Cardiovasc Surg. 1998;46(Suppl 2):248–54.

    Article  PubMed  Google Scholar 

  • Segers P, Qasem A, De Backer T, Carlier S, Verdonck P, Avolio A. Peripheral “Oscillatory” compliance is associated with aortic + augmentation index. Hypertension. 2001;37:1434–9.

    PubMed  CAS  Google Scholar 

  • Seoudi HM, Perkal MF, Hanrahan A, Angood PB. The esophageal Doppler monitor in mechanically ventilated surgical patients: does it work? J Trauma Injury Infect Critic Care. 2003;55(4):720–6.

    Article  Google Scholar 

  • Singer M, Bennett ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Critic Care Med. 1991;19(9):1132–7.

    CAS  Google Scholar 

  • Singer M, Allen MJ, Webb AR, Bennett ED. Effects of alteration in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 1991;19:1138–45.

    Article  PubMed  CAS  Google Scholar 

  • Soma J, Aakhus S, Dahl K, Widerøe TE, Skjærpe T. Total arterial compliance in ambulatory hypertension during selective β1 adrenergic receptor blockade and angiotensin-converting enzyme inhibition. J Cardiovasc Pharmacol. 1999;33(2):273–9.

    Article  PubMed  CAS  Google Scholar 

  • Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the windkessel model. Am J Physiol. 1999;276(Heart Circ Physiol 45):H81–8.

    Google Scholar 

  • Sugawara M, Senda S, Katayama H, Masugata H, Nishiya T, Matsuo H. Noninvasive estimation of left ventricular Max(dP/dt) from aortic flow acceleration and pulse wave velocity. Echocardiography. 1994;11:377–84.

    Article  PubMed  CAS  Google Scholar 

  • The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. NEJM. 2006;354(21):2213–23.

    Google Scholar 

  • Valtier B, Cholley BP, Belot JP, et al. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158:77–83.

    PubMed  CAS  Google Scholar 

  • Vignon P. Hemodynamic assessment of critically ill patients using echocardiography Doppler. Curr Opin Critic Care. 2005;11(3):227–34.

    Article  Google Scholar 

  • Vincent JL, Dhainaut JF, Perret C, Suter P (1998) Is the pulmonary artery catheter misused? A European view. Critic Care Med. 1998;26(7):1283–7.

    Article  CAS  Google Scholar 

  • Wallmeyer K, Wann LS, Sagar KB, Kalbfleisch J, Klopfenstein HS. The influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparation. Circulation. 1986;74:181–6.

    PubMed  CAS  Google Scholar 

  • Warzawski RC, Deye AN, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trail. JAMA. 2003;290(20):2713–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen M. Atlas.

Appendices

Appendix A

Determining Cardiac Output Using EDM Parameters (Boulnois and Pechoux 2000)

Stroke distance, in the distal aorta, SDaorta, is determined from the integral of distal aortic blood flow velocity over flow time:

$$\hbox{SD}_{\rm aorta} =\int\limits_{0}^{\rm FT}v(t){\rm d}t.$$
(A.1)

Note that the average velocity, of distal aortic blood flow \(\bar{V}\), is:

$$ \bar{V}=\frac{1}{\hbox{FT}}\int_{0}^{\rm FT}v(t)\hbox{d}t.$$
(A.2)

Therefore, SDaorta is equivalent to the product of average velocity and flow time:

$$ \hbox{SD}_{\rm aorta} = (\bar{V})(\hbox{FT}). $$
(A.3)

Stroke volume in the distal aorta is:

$$ \hbox{SV}_{\rm aorta} = (\hbox{SD}_{\rm aorta})(A). $$
(A.4)

where A is the distal aortic cross-sectional area. Thus:

$$ \hbox{SV}_{\rm aorta} = (\bar{V})(A)(\hbox{FT}).$$
(A.5)

That portion of cardiac output, which flows through the distal aorta, is then:

$$ \hbox{CO}_{\rm aorta} = (\hbox{SV}_{\rm aorta})(\hbox{HR}) = (\bar{V}) (A)(\hbox{FT})(\hbox{HR}). $$
(A.6)

In this application, flow time, FT, has units of seconds/beat and heart rate, HR, has units of beats/second. Therefore the product: FT × HR is dimensionless.

Total cardiac output is then:

$$ \hbox{CO} = (\bar{V})(A)(\hbox{FT})(\hbox{HR})(1.4). $$
(A.7)

where 1.4 is a dimensionless constant which is based upon a linear regression analysis from clinical data (Boulnois and Pechoux 2000).

If distal aortic cross-sectional area is unknown, minute distance within the aorta, MDaorta, can be defined as:

$$ \hbox{MD}_{\rm aorta} = (\bar{V})(\hbox{FT})(\hbox{HR}).$$
(A.8)

Therefore, MDaorta = SDaorta · HR. Thus, MDaorta correlates with total cardiac output.

Appendix B

Determining Stroke Distance, in the Distal Aorta, by Integrating Aortic Blood Flow Velocity Over Time

Using the logistic-based systolic model:

$$ {sd}(t)=\int{v(t){\rm d}}t=\int\alpha\beta \hbox{e}^{-\gamma t}\left[\left(1-\frac{t}{\hbox{FT}}\right) t\right]\hbox{d}t $$
(B.1)

Separating the above so that sd(t) =  I 1I 2constant of integration:

$$I_{1} =\int\alpha\beta \hbox{e}^{-\gamma {t}}t\,{\rm d}t = \frac{(\gamma t\hbox{e}^{-\gamma t} -\hbox{e}^{-\gamma {t}})}{\gamma^2}\alpha\beta $$
(B.2)
$$ I_{1} =\frac{-(\gamma t+1)}{\gamma^2}\alpha\beta \hbox{e}^{-\gamma {t}} $$
(B.3)
$$ I_{2}=\int \alpha\beta \hbox{e}^{-\gamma {t}}\frac{t^2} {\hbox{FT}}\,\hbox{d}t $$
(B.4)
$$ I_{2} =\frac{-(\gamma^2 t^2\hbox{e}^{-\gamma t}+ 2\gamma t\hbox{e}^{-\gamma t}+2\hbox{e}^{-\gamma t})}{\gamma^3}\frac{\alpha\beta}{\hbox{FT}} $$
(B.5)
$$ I_{2} =\frac{(-(\gamma t)^2-2\gamma t- 2)}{\gamma^3}\frac{\alpha\beta}{\hbox{FT}}\hbox{e}^{-\gamma t} $$
(B.6)
$$ I_{1} - I_{2} =\left(\frac{-(\gamma t+1)}{\gamma^2}- \frac{(-(\gamma t)^2-2\gamma t- 2)}{\gamma^3\hbox{FT}} \right)\alpha\beta \hbox{e}^{-\gamma t} $$
(B.7)
$$ I_{1} - I_{2} =\frac{(-\gamma^2 t\hbox{FT}-\gamma \hbox{FT}+(\gamma t)^2+2\gamma t+2)}{\gamma^3\hbox{FT}}\alpha\beta \hbox{e}^{-\gamma t} $$
(B.8)
$$ I_{1} - I_{2} =\left(\frac{- t}{\gamma}-\frac{1}{\gamma^2} +\frac{t^2}{\gamma \hbox{FT}}+\frac{2 t}{\gamma^2 \hbox{FT}}+\frac{2}{\gamma^3\hbox{FT}}\right)\alpha\beta \hbox{e}^{-\gamma t} $$
(B.9)
$$ I_{1} - I_{2} =\left(\frac{\left(-1+\frac{1}{\hbox{FT}}\right)t}{\gamma} +\frac{\left(-1+\frac{2 t}{\hbox{FT}}\right)}{\gamma^2}+ \frac{2}{\gamma^3\hbox{FT}}\right)\alpha\beta \hbox{e}^{-\gamma t} $$
(B.10)

The constant of integration is then chosen so that sd(0) = 0:

$$ {sd}(t) = \left(\frac{\left(-1+\frac{1}{\hbox{FT}}\right)t}{\gamma} +\frac{\left(-1+\frac{2 t}{\hbox{FT}}\right)}{\gamma^2}+ \frac{2}{\gamma^3\hbox{FT}}\right)\alpha\beta \hbox{e}^{-\gamma t}-\left(-1+\frac{2}{\gamma \hbox{FT}}\right)\frac{\alpha\beta}{\gamma^2}.$$
(B.11)

Thus:

$$ \int v(t)\hbox{d}t={sd}(t)=\left[\left[\left(\frac{t}{\hbox{FT}}-1 \right)t+\left(2\frac{t}{ \hbox{FT}}-1\right)\frac{1}{\gamma}+\frac{2}{\hbox{FT}\gamma^2}\right] \frac{\alpha\beta}{\gamma}\hbox{e}^{-\gamma t}\right]-\left(-1+\frac{2}{\gamma \hbox{FT}}\right)\frac{\alpha\beta}{\gamma^2}. $$
(B.12)

Figure A1 is plot of sd(t) which reveals the familiar sigmoid curve that is characteristic of the logistic function.

Fig. A1
figure 7

A plot of stroke distance, sd(t), as a function of time. Note its sigmoid shape which is characteristic of the logistic function

Evaluating \({sd}(t)\vert^{\rm FT}_{0}\) yields SDaortasd(FT) since sd(0) = 0:

$$ \hbox{SD}_{\rm aorta} = {sd(\rm FT)} - {{sd}(0)} =\left[\left( 1+\frac{2}{\hbox{FT}\gamma}\right)\hbox{e}^{-\gamma {\rm FT}}-\left(-1+\frac{2}{\hbox{FT}\gamma}\right)\right]\frac{\alpha\beta}{\gamma^2}. $$
(B.13)

Appendix C

Derivation of the Bramwell–Hill Equation (Bramwell and Hill 1922)

Tension, T, within the wall of a compliant cylinder can be described as:

$$ T = \sigma h = r\Updelta \hbox{P}. $$
(C.1)

where σ is stress and h is wall thickness. It is assumed that h is small compared to radius, r. Furthermore, both internal and external radii are approximately equal and are represented as the constant r. ΔP represents the difference between external and internal wall pressures.

Therefore, wall stress is (Noordergraaf 1978):

$$ \sigma=\frac{r\Updelta P}{h}.$$
(C.2)

Strain, ɛ, is defined as:

$$ \varepsilon=\frac{\Updelta r}{r}. $$
(C.3)

Young’s modulus, E, is:

$$ E =\frac{\sigma}{\varepsilon} =\frac{\frac{r\Updelta P}{h}} {\frac{\Updelta r}{r}}=\frac{r^2\Updelta P}{h\Updelta r}. $$
(C.4)

The change in radius, due to the change in pressure, can then be represented as:

$$ \Updelta r=\frac{r^2\Updelta P}{hE}. $$
(C.5)

Compliance is defined as the change in volume divided by the change in pressure:

$$ C=\frac{\Updelta \hbox{Vol}}{\Updelta P}=\frac{\pi r_{\rm f}^2 L_{\rm e}-\pi r_{\rm i}^2 L_{\rm e}}{\Updelta P}= \frac{\pi L_{\rm e}(r_{\rm f}^2- r_{\rm i}^2)}{\Updelta P}. $$
(C.6)

where r f is the final radius and r i is the initial radius and L e is the length of the compliant cylinder. Recognizing that (r 2f r 2i ) is the difference of two squares, (C.6) can then be expressed as:

$$ C=\frac{\pi L_{\rm e}(r_{\rm f}+ r_{\rm i})(r_{\rm f}- r_{\rm i})}{\Updelta P}. $$
(C.7)

Noting that \(r_{\rm f}+ r_{\rm i}\approx 2 r\) and r fr i = Δr, then (C.7) can be expressed as:

$$ C=\frac{\pi L_{\rm e}(2 r)(\Updelta r)}{\Updelta P}.$$
(C.8)

Substituting (C.5) into (C.8) yields:

$$ C=\frac{\pi L_{\rm e}(2 r)(r^2\Updelta P)}{hE\Updelta P}. $$
(C.9)

Compliance can then be expressed as:

$$ C=\frac{2 \cdot \hbox{Vol} \cdot r}{hE}.$$
(C.10)

Young’s modulus can then be represented as:

$$ E=\frac{2\cdot \hbox{Vol}\cdot r}{hC}. $$
(C.11)

The Moens–Korteweg equation (Milnor 1989) relates pulse wave velocity, in a compliant cylinder, to its geometric and physical properties:

$$ v_{pw}=\sqrt{\frac{Eh}{2\rho r}}. $$
(C.12)

Substituting (C.11) into (C.12) and simplifying yields the Bramwell–Hill equation ([Milnor 1989; Liu et al. 1989):

$$ v_{pw}=\sqrt{\frac{\frac{2\cdot \hbox{Vol} \cdot r}{hC} h}{2\rho r}}=\sqrt{\frac{\hbox{Vol}}{\rho C}}. $$
(C.13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlas, G.M. Development and Application of a Logistic-Based Systolic Model for Hemodynamic Measurements Using the Esophageal Doppler Monitor. Cardiovasc Eng 8, 159–173 (2008). https://doi.org/10.1007/s10558-008-9057-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-008-9057-9

Keywords

Navigation