Skip to main content

Advertisement

Log in

A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease (CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth’s crust. Inorganic arsenic (iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the potential mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S76-99.

    Article  PubMed  Google Scholar 

  2. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122:2748–64.

    Article  PubMed  Google Scholar 

  3. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  4. Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–743.

    Article  PubMed  Google Scholar 

  5. States JC, Srivastava S, Chen Y, Barchowsky A. Arsenic and cardiovascular disease. Toxicol Sci. 2009;107:312–23.

    Article  CAS  PubMed  Google Scholar 

  6. Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16.

    Article  CAS  PubMed  Google Scholar 

  7. Wu X, Cobbina SJ, Mao G, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int. 2016;23:8244–59.

    Article  CAS  PubMed  Google Scholar 

  8. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci. 2011;123:305–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahman M, Sohel N, Yunus FM, et al. Arsenic exposure and young adult’s mortality risk: a 13-year follow-up study in Matlab. Bangladesh Environ Int. 2019;123:358–67.

    Article  CAS  PubMed  Google Scholar 

  10. DeSimone LA, McMahon, P.B., Rosen, M.R. The quality of our Nation’s waters—water quality in Principal Aquifers of the United States, 1991–2010. US Geological Survey Circular 1360:151.

  11. Tseng CH. Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2005;23:55–74.

    Article  PubMed  Google Scholar 

  12. Moon KA, Guallar E, Umans JG et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med. 2013;159:649–59.

  13. Kurzius-Spencer M, Burgess JL, Harris RB, et al. Contribution of diet to aggregate arsenic exposures-an analysis across populations. J Expo Sci Environ Epidemiol. 2014;24:156–62.

    Article  CAS  PubMed  Google Scholar 

  14. Kurzius-Spencer M, O’Rourke MK, Hsu CH, et al. Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Expo Sci Environ Epidemiol. 2013;23:442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kile ML, Houseman EA, Breton CV, et al. Dietary arsenic exposure in Bangladesh. Environ Health Perspect. 2007;115:889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gilbert-Diamond D, Cottingham KL, Gruber JF, et al. Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A. 2011;108:20656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karagas MR, Punshon T, Sayarath V, et al. Association of rice and rice-product consumption with arsenic exposure early in life. JAMA Pediatr. 2016;170:609–16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Perspect. 2010;118:345–50.

    Article  CAS  PubMed  Google Scholar 

  19. Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health. 2014;47:253–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen Y, Han YH, Cao Y, et al. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci. 2017;8:268.

    PubMed  PubMed Central  Google Scholar 

  21. Seo MN, Lee SG, Eom SY, et al. Estimation of total and inorganic arsenic intake from the diet in Korean adults. Arch Environ Contam Toxicol. 2016;70:647–56.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol. 2006;36:99–133.

    Article  CAS  PubMed  Google Scholar 

  23. Rasheed H, Kay P, Slack R, Gong YY. Assessment of arsenic species in human hair, toenail and urine and their association with water and staple food. J Expo Sci Environ Epidemiol. 2019;29:624–32.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Hakim ME, Parvez F, et al. Arsenic exposure from drinking-water and carotid artery intima-medial thickness in healthy young adults in Bangladesh. J Health Popul Nutr. 2006;24:253–7.

    CAS  PubMed  Google Scholar 

  25. Sohel N, Persson LA, Rahman M, et al. Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology. 2009;20:824–30.

    Article  PubMed  Google Scholar 

  26. Chen Y, Graziano JH, Parvez F, et al. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ. 2011;342: d2431.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Wu F, Liu M, et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ Health Perspect. 2013;121:832–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Wu F, Parvez F, et al. Arsenic exposure from drinking water and QT-interval prolongation: results from the Health Effects of Arsenic Longitudinal Study. Environ Health Perspect. 2013;121:427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang YH, Wu MM, Hong CT, et al. Effects of arsenic exposure and genetic polymorphisms of p53, glutathione S-transferase M1, T1, and P1 on the risk of carotid atherosclerosis in Taiwan. Atherosclerosis. 2007;192:305–12.

    Article  CAS  PubMed  Google Scholar 

  30. Wade TJ, Xia Y, Wu K, et al. Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health. 2009;6:1107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu MM, Chiou HY, Chen CL, et al. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan. Toxicol Appl Pharmacol. 2010;248:226–33.

    Article  CAS  PubMed  Google Scholar 

  32. Hsueh YM, Wu WL, Huang YL, et al. Low serum carotene level and increased risk of ischemic heart disease related to long-term arsenic exposure. Atherosclerosis. 1998;141:249–57.

    Article  CAS  PubMed  Google Scholar 

  33. Chen CJ, Chiou HY, Chiang MH, Lin LJ, Tai TY. Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol. 1996;16:504–10.

    Article  CAS  PubMed  Google Scholar 

  34. Chen CJ, Hsueh YM, Lai MS, et al. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 1995;25:53–60.

    Article  PubMed  Google Scholar 

  35. Rahman M, Tondel M, Ahmad SA, et al. Hypertension and arsenic exposure in Bangladesh. Hypertension. 1999;33:74–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wang CH, Jeng JS, Yip PK, et al. Biological gradient between long-term arsenic exposure and carotid atherosclerosis. Circulation. 2002;105:1804–9.

    Article  CAS  PubMed  Google Scholar 

  37. Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep. 2012;14:542–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 2017;125: 087001.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Medrano MA, Boix R, Pastor-Barriuso R, et al. Arsenic in public water supplies and cardiovascular mortality in Spain. Environ Res. 2010;110:448–54.

    Article  CAS  PubMed  Google Scholar 

  40. Meliker JR, Wahl RL, Cameron LL, Nriagu JO. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health. 2007;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gong G, O’Bryant SE. Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environ Res. 2012;113:52–7.

    Article  CAS  PubMed  Google Scholar 

  42. Lisabeth LD, Ahn HJ, Chen JJ, et al. Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke. 2010;41:2499–504.

    Article  CAS  PubMed  Google Scholar 

  43. Monrad M, Ersbøll AK, Sørensen M, et al. Low-level arsenic in drinking water and risk of incident myocardial infarction: a cohort study. Environ Res. 2017;154:318–24.

    Article  CAS  PubMed  Google Scholar 

  44. James KA, Byers T, Hokanson JE, et al. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. Environ Health Perspect. 2015;123:128–34.

    Article  PubMed  Google Scholar 

  45. Chen Y, Karagas MR. Arsenic and cardiovascular disease: new evidence from the United States. Ann Intern Med. 2013;159:713–4.

    PubMed  PubMed Central  Google Scholar 

  46. Nong Q, Zhang Y, Guallar E, Zhong Q. Arsenic exposure and predicted 10-year atherosclerotic cardiovascular risk using the pooled cohort equations in U.S. hypertensive adults. Int J Environ Res Public Health. 2016;13.

  47. Xu L, Polya DA, Li Q, Mondal D. Association of low-level inorganic arsenic exposure from rice with age-standardized mortality risk of cardiovascular disease (CVD) in England and Wales. Sci Total Environ. 2020;743: 140534.

    Article  CAS  PubMed  Google Scholar 

  48. Gamble MV, Liu X, Slavkovich V, et al. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr. 2007;86:1202–9.

    Article  CAS  PubMed  Google Scholar 

  49. Argos M, Rahman M, Parvez F, et al. Baseline comorbidities in a skin cancer prevention trial in Bangladesh. Eur J Clin Invest. 2013;43:579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spallholz JE, Mallory Boylan L, Rhaman MM. Environmental hypothesis: is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Sci Total Environ. 2004;323:21–32.

    Article  CAS  PubMed  Google Scholar 

  51. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345:1583–92.

    Article  CAS  PubMed  Google Scholar 

  52. Nyyssönen K, Porkkala E, Salonen R, Korpela H, Salonen JT. Increase in oxidation resistance of atherogenic serum lipoproteins following antioxidant supplementation: a randomized double-blind placebo-controlled clinical trial. Eur J Clin Nutr. 1994;48:633–42.

    PubMed  Google Scholar 

  53. Salonen JT, Salonen R, Seppänen K, et al. Effects of antioxidant supplementation on platelet function: a randomized pair-matched, placebo-controlled, double-blind trial in men with low antioxidant status. Am J Clin Nutr. 1991;53:1222–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zwolak I. The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res. 2020;193:44–63.

    Article  CAS  PubMed  Google Scholar 

  55. Ochoa-Martínez ÁC, Araiza-Gamboa Y, Varela-Silva JA, et al. Effect of gene-environment interaction (arsenic exposure - PON1 Q192R polymorphism) on cardiovascular disease biomarkers in Mexican population. Environ Toxicol Pharmacol. 2021;81: 103519.

    Article  PubMed  Google Scholar 

  56. Farzan SF, Chen Y, Rees JR, Zens MS, Karagas MR. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study. Toxicol Appl Pharmacol. 2015;287:93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scannell Bryan M, Sofer T, Mossavar-Rahmani Y, et al. Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- and diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort. Int J Epidemiol. 2019;48:876–86.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pichler G, Grau-Perez M, Tellez-Plaza M, et al. Association of arsenic exposure with cardiac geometry and left ventricular function in young adults. Circ Cardiovasc Imaging. 2019;12: e009018.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pace C, Smith-Gagen J, Angermann J. Arsenic Methylation capacity and metabolic syndrome in the 2013–2014 U.S. National Health and Nutrition Examination Survey (NHANES). Int J Environ Res Public Health. 2018;15. doi:.

  60. Sidhu MS, Desai KP, Lynch HN, et al. Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology. 2015;331:78–99.

    Article  CAS  PubMed  Google Scholar 

  61. Bhatnagar A. Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res. 2006;99:692–705.

    Article  CAS  PubMed  Google Scholar 

  62. Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999;27:1405–12.

    Article  CAS  PubMed  Google Scholar 

  63. Chen YC, Lin-Shiau SY, Lin JK. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol. 1998;177:324–33.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Z, Dey S, Rosen BP, Rossman TG. Efflux-mediated resistance to arsenicals in arsenic-resistant and -hypersensitive Chinese hamster cells. Toxicol Appl Pharmacol. 1996;137:112–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kumagai Y, Pi J. Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol Appl Pharmacol. 2004;198:450–7.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Y, Santella RM, Kibriya MG, et al. Association between arsenic exposure from drinking water and plasma levels of soluble cell adhesion molecules. Environ Health Perspect. 2007;115:1415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blankenberg S, Rupprecht HJ, Bickel C, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001;104:1336–42.

    Article  CAS  PubMed  Google Scholar 

  68. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.

    Article  CAS  PubMed  Google Scholar 

  69. Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet. 1998;351:88–92.

    Article  CAS  PubMed  Google Scholar 

  70. Karim MR, Rahman M, Islam K, et al. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. 2013;135:17–25.

    Article  CAS  PubMed  Google Scholar 

  71. Farzan SF, Howe CG, Zens MS et al. Urine arsenic and arsenic metabolites in U.S. adults and biomarkers of inflammation, oxidative stress, and endothelial dysfunction: a cross-sectional study. Environ Health Perspect. 2017;125:127002

  72. Sobel MH, Sanchez TR, Jones MR, et al. Rice intake, arsenic exposure, and subclinical cardiovascular disease among US adults in MESA. J Am Heart Assoc. 2020;9: e015658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu F, Molinaro P, Chen Y. Arsenic exposure and subclinical endpoints of cardiovascular diseases. Curr Environ Health Rep. 2014;1:148–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harper KN, Liu X, Hall MN, et al. A dose-response study of arsenic exposure and markers of oxidative damage in Bangladesh. J Occup Environ Med. 2014;56:652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simeonova PP, Hulderman T, Harki D, Luster MI. Arsenic exposure accelerates atherogenesis in apolipoprotein E(-/-) mice. Environ Health Perspect. 2003;111:1744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bunderson M, Brooks DM, Walker DL, et al. Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol. 2004;201:32–9.

    Article  CAS  PubMed  Google Scholar 

  77. Srivastava S, Vladykovskaya EN, Haberzettl P, et al. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice. Toxicol Appl Pharmacol. 2009;241:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Srivastava S, D’Souza SE, Sen U, States JC. In utero arsenic exposure induces early onset of atherosclerosis in ApoE-/- mice. Reprod Toxicol. 2007;23:449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lemaire M, Lemarié CA, Molina MF, et al. Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE-/- mouse model. Toxicol Sci. 2011;122:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moon KA, Navas-Acien A, Grau-Pérez M, et al. Low-moderate urine arsenic and biomarkers of thrombosis and inflammation in the Strong Heart Study. PLoS ONE. 2017;12: e0182435.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V. Neovascularization in human atherosclerosis. Curr Mol Med. 2006;6:457–77.

    Article  CAS  PubMed  Google Scholar 

  82. Soucy NV, Mayka D, Klei LR, et al. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc Toxicol. 2005;5:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Larsson A, Sköldenberg E, Ericson H. Serum and plasma levels of FGF-2 and VEGF in healthy blood donors. Angiogenesis. 2002;5:107–10.

    Article  CAS  PubMed  Google Scholar 

  84. Sanchez-Soria P, Broka D, Monks SL, Camenisch TD. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice. Toxicol Pathol. 2012;40:504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Phan NN, Wang CY, Lin YC. The novel regulations of MEF2A, CAMKK2, CALM3, and TNNI3 in ventricular hypertrophy induced by arsenic exposure in rats. Toxicology. 2014;324:123–35.

    Article  CAS  PubMed  Google Scholar 

  86. Kabir R, Sinha P, Mishra S, et al. Inorganic arsenic induces sex-dependent pathological hypertrophy in the heart. Am J Physiol Heart Circ Physiol. 2021;320:H1321–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. States JC, Singh AV, Knudsen TB, et al. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis. PLoS ONE. 2012;7: e38713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ngalame NN, Micciche AF, Feil ME, States JC. Delayed temporal increase of hepatic Hsp70 in ApoE knockout mice after prenatal arsenic exposure. Toxicol Sci. 2013;131:225–33.

    Article  CAS  PubMed  Google Scholar 

  89. Tan M, Schmidt RH, Beier JI, et al. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice. Toxicol Appl Pharmacol. 2011;257:356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Newman JD, Echagarruga CT, Ogando YM, et al. Hyperglycemia enhances arsenic-induced platelet and megakaryocyte activation. J Transl Med. 2017;15:55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception of the idea for the review: Dr. Desai, Dr. Venditti, and Dr. Sidhu.

Performed the literature search and drafted the review: Dr. Kaur, Dr. Desai, and Ms. Chang.

Critical revision of drafts: Dr. Kaur, Dr. Desai, Ms. Chang, Dr. Newman, Dr. Mathew, Dr. Bangalore, Dr. Venditti, and Dr. Sidhu.

Corresponding author

Correspondence to Mandeep S. Sidhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Desai, K.P., Chang, I.Y. et al. A Clinical Perspective on Arsenic Exposure and Development of Atherosclerotic Cardiovascular Disease. Cardiovasc Drugs Ther 37, 1167–1174 (2023). https://doi.org/10.1007/s10557-021-07313-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07313-9

Keywords

Navigation