Skip to main content

Advertisement

Log in

Impact of Peripheral α7-Nicotinic Acetylcholine Receptors on Cardioprotective Effects of Donepezil in Chronic Heart Failure Rats

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Pharmacological modulation of parasympathetic activity with donepezil, an acetylcholinesterase inhibitor, improves the long-term survival of rats with chronic heart failure (CHF) after myocardial infarction (MI). However, its mechanism is not well understood. The α7-nicotinic acetylcholine receptor (α7-nAChR) reportedly plays an important role in the cholinergic anti-inflammatory pathway. The purpose of this study was to examine whether blockade of α7-nAChR, either centrally or peripherally, affects cardioprotection by donepezil during CHF.

Methods

One-week post-MI, the surviving rats were implanted with an electrocardiogram or blood pressure transmitter to monitor hemodynamics continuously. Seven days after implantation, the MI rats (n = 74) were administered donepezil in drinking water or were untreated (UT). Donepezil-treated MI rats were randomly assigned to the following four groups: peripheral infusion of saline (SPDT) or an α7-nAChR antagonist methyllycaconitine (α7PDT), and brain infusion of saline (SBDT) or the α7-nAChR antagonist (α7BDT).

Results

After the 4-week treatment, the role of α7-nAChR was evaluated using hemodynamic parameters, neurohumoral states, and histological and morphological assessment. Between the peripheral infusion groups, α7PDT (vs. SPDT) showed significantly increased heart weight and cardiac fibrosis, deteriorated hemodynamics, increased plasma neurohumoral and cytokine levels, and significantly decreased microvessel density (as assessed by anti-von Willebrand factor–positive cells). In contrast, between the brain infusion groups, α7BDT (vs. SBDT) showed no changes in either cardiac remodeling or hemodynamics.

Conclusion

Peripheral blockade of α7-nAChR significantly attenuated the cardioprotective effects of donepezil in CHF rats, whereas central blockade did not. This suggests that peripheral activation of α7-nAChR plays an important role in cholinergic pharmacotherapy for CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Desai MY, Watanabe MA, Laddu AA, Hauptman PJ. Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev. 2011;16(2):179–93. https://doi.org/10.1007/s10741-010-9195-1.

    Article  CAS  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the heart failure society of America. J Card Fail. 2017;23:628–51. https://doi.org/10.1016/j.cardfail.2017.04.014.

    Article  PubMed  Google Scholar 

  3. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P. Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation. 1985;72(2):406–12. https://doi.org/10.1161/01.cir.72.2.406.

    Article  CAS  PubMed  Google Scholar 

  4. Milavetz JJ, Raya TE, Johnson CS, Morkin E, Goldman S. Survival after myocardial infarction in rats: captopril versus losartan. J Am Coll Cardiol. 1996;27(3):714–9. https://doi.org/10.1016/0735-1097(95)00506-4.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmet I, Morrell C, Lakatta EG, Talan MI. Therapeutic efficacy of a combination of a beta1-adrenoreceptor (AR) blocker and beta2-AR agonist in a rat model of postmyocardial infarction dilated heart failure exceeds that of a beta1-AR blocker plus angiotensin-converting enzyme inhibitor. J Pharmacol Exp Ther. 2009;331(1):178–85. https://doi.org/10.1124/jpet.109.157107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawada T, Li M, Zheng C, et al. Chronic vagal nerve stimulation improves baroreflex neural arc function in heart failure rats. J Appl Physiol (1985). 2014;116(10):1308–14. https://doi.org/10.1152/japplphysiol.00140.2014.

    Article  Google Scholar 

  7. De Jong MJ, Randall DC. Heart rate variability analysis in the assessment of autonomic function in heart failure. J Cardiovasc Nurs. 2005;20(3):186–95. https://doi.org/10.1097/00005082-200505000-00010.

    Article  PubMed  Google Scholar 

  8. Segovia V, Manterola C, Gonzalez M, Rodriguez-Nunez I. The exercise training restores the heart rate variability in heart failure patients. A systematic review. Arch Cardiol Mex. 2017;87(4):326–35. https://doi.org/10.1016/j.acmx.2016.12.002.

    Article  PubMed  Google Scholar 

  9. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4. https://doi.org/10.1161/01.CIR.0000105721.71640.DA.

    Article  PubMed  Google Scholar 

  10. Li M, Zheng C, Inagaki M, Kawada T, Sunagawa K, Sugimachi M. Chronic vagal stimulation decreased vasopressin secretion and sodium ingestion in heart failure rats after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc. 2005;4:3962–5. https://doi.org/10.1109/IEMBS.2005.1615329.

    Article  Google Scholar 

  11. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Shishido T, et al. Donepezil markedly improves long-term survival in rats with chronic heart failure after extensive myocardial infarction. Circ J. 2013;77(10):2519–25. https://doi.org/10.1253/circj.cj-13-0476.

    Article  CAS  PubMed  Google Scholar 

  12. Nordstrom P, Religa D, Wimo A, Winblad B, Eriksdotter M. The use of cholinesterase inhibitors and the risk of myocardial infarction and death: a nationwide cohort study in subjects with Alzheimer’s disease. Eur Heart J. 2013;34(33):2585–91. https://doi.org/10.1093/eurheartj/eht182.

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Chronic vagal nerve stimulation exerts additional beneficial effects on the beta-blocker-treated failing heart. J Physiol Sci. 2019;69(2):295–303. https://doi.org/10.1007/s12576-018-0646-0.

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Adding the acetylcholinesterase inhibitor, donepezil, to losartan treatment markedly improves long-term survival in rats with chronic heart failure. Eur J Heart Fail. 2014;16(10):1056–65. https://doi.org/10.1002/ejhf.164.

    Article  CAS  PubMed  Google Scholar 

  15. Kjekshus J, Apetrei E, Barrios V, Böhm M, Cleland JG, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357(22):2248–61. https://doi.org/10.1056/NEJMoa0706201.

    Article  CAS  PubMed  Google Scholar 

  16. Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH, Hildebrandt P, et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet. 2008;371(9608):228–36. https://doi.org/10.1016/S0140-6736(08)60134-8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao M, Sun L, Liu JJ, Wang H, Miao Y, Zang WJ. Vagal nerve modulation: a promising new therapeutic approach for cardiovascular diseases. Clin Exp Pharmacol Physiol. 2012;39(8):701–5. https://doi.org/10.1111/j.1440-1681.2011.05644.x.

    Article  CAS  PubMed  Google Scholar 

  18. Mann DL. Tumor necrosis factor-induced signal transduction and left ventricular remodeling. J Card Fail. 2002;8(6 Suppl):S379–86. https://doi.org/10.1054/jcaf.2002.129253.

    Article  CAS  PubMed  Google Scholar 

  19. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–62. https://doi.org/10.1038/35013070.

    Article  CAS  PubMed  Google Scholar 

  20. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107(8):1189–94. https://doi.org/10.1161/01.cir.0000050627.90734.ed.

    Article  PubMed  Google Scholar 

  21. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195(6):781–8. https://doi.org/10.1084/jem.20011714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8. https://doi.org/10.1038/nature01339.

    Article  CAS  PubMed  Google Scholar 

  23. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23(1):41–5. https://doi.org/10.1016/j.bbi.2008.06.011.

    Article  CAS  PubMed  Google Scholar 

  24. Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest. 2002;110(4):527–36. https://doi.org/10.1172/JCI14676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moore C, Wang Y, Ramage AG. Nicotine’s central cardiovascular actions: receptor subtypes involved and their possible physiological role in anaesthetized rats. Eur J Pharmacol. 2011;668(1–2):177–83. https://doi.org/10.1016/j.ejphar.2011.06.055.

    Article  CAS  PubMed  Google Scholar 

  26. Turek JW, Kang CH, Campbell JE, Arneric SP, Sullivan JP. A sensitive technique for the detection of the alpha 7 neuronal nicotinic acetylcholine receptor antagonist, methyllycaconitine, in rat plasma and brain. J Neurosci Methods. 1995;61(1–2):113–8. https://doi.org/10.1016/0165-0270(95)00032-p.

    Article  CAS  PubMed  Google Scholar 

  27. Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Intracerebroventricular infusion of donepezil prevents cardiac remodeling and improves the prognosis of chronic heart failure rats. J Physiol Sci. 2020;70(1):11. https://doi.org/10.1186/s12576-020-00739-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med. 2009;265(6):663–79. https://doi.org/10.1111/j.1365-2796.2009.02098.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anzai T. Post-infarction inflammation and left ventricular remodeling: a double-edged sword. Circ J. 2013;77(3):580–7. https://doi.org/10.1253/circj.cj-13-0013.

    Article  CAS  PubMed  Google Scholar 

  30. Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, et al. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats. Am J Respir Cell Mol Biol. 2007;37(2):186–92. https://doi.org/10.1165/rcmb.2006-0240OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitra AK, Gao L, Zucker IH. Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons. Am J Physiol Cell Physiol. 2010;299(3):C561–9. https://doi.org/10.1152/ajpcell.00127.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A. 2006;103(13):5219–23. https://doi.org/10.1073/pnas.0600506103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4(8):673–84. https://doi.org/10.1038/nrd1797.

    Article  CAS  PubMed  Google Scholar 

  34. Okazaki Y, Zheng C, Li M, Sugimachi M. Effect of the cholinesterase inhibitor donepezil on cardiac remodeling and autonomic balance in rats with heart failure. J Physiol Sci. 2010;60(1):67–74. https://doi.org/10.1007/s12576-009-0071-5.

    Article  CAS  PubMed  Google Scholar 

  35. Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart. 2003;89(8):854–8. https://doi.org/10.1136/heart.89.8.854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castro RR, Porphirio G, Serra SM, Nobrega AC. Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia. Heart. 2004;90(10):1119–23. https://doi.org/10.1136/hrt.2003.028167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raj SR, Black BK, Biaggioni I, Harris PA, Robertson D. Acetylcholinesterase inhibition improves tachycardia in postural tachycardia syndrome. Circulation. 2005;111(21):2734–40. https://doi.org/10.1161/CIRCULATIONAHA.104.497594.

    Article  CAS  PubMed  Google Scholar 

  38. Burkhoff D, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Phys. 1986;250(6 Pt 2):R1021–7. https://doi.org/10.1152/ajpregu.1986.250.6R1021.

    Article  CAS  Google Scholar 

  39. Gaballa MA, Goldman S. Ventricular remodeling in heart failure. J Card Fail. 2002;8(6 Suppl):S476–85. https://doi.org/10.1054/jcaf.2002.129270.

    Article  PubMed  Google Scholar 

  40. Kubo T, Sato T, Noguchi T, Kitaoka H, Yamasaki F, Kamimura N, et al. Influences of donepezil on cardiovascular system--possible therapeutic benefits for heart failure--donepezil cardiac test registry (DOCTER) study. J Cardiovasc Pharmacol. 2012;60(3):310–4. https://doi.org/10.1097/FJC.0b013e3182609a74.

    Article  CAS  PubMed  Google Scholar 

  41. Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: from cells to patient reports. Acta Physiol (Oxf). 2019;e13396. https://doi.org/10.1111/apha.13396.

  42. Mavropoulos SA, Khan NS, Levy ACJ, Faliks BT, Sison CP, Pavlov VA, et al. Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion. Mol Med. 2017;23:120–33. https://doi.org/10.2119/molmed.2017.00091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oikawa S, Kai Y, Mano A, Nakamura S, Kakinuma Y. A novel nitric oxide donor, S-nitroso-Npivaloyl-D-penicillamine, activates a non-neuronal cardiac cholinergic system to synthesize acetylcholine and augments cardiac function. Cell Physiol Biochem. 2019;52(4):922–34. https://doi.org/10.33594/000000064.

    Article  CAS  PubMed  Google Scholar 

  44. Saw EL, Kakinuma Y, Fronius M, Katare R. The non-neuronal cholinergic system in the heart: a comprehensive review. J Mol Cell Cardiol. 2018;125:129–39. https://doi.org/10.1016/j.yjmcc.2018.10.013.

    Article  CAS  PubMed  Google Scholar 

  45. Kakinuma Y, Akiyama T, Sato T. Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J. 2009;276(18):5111–25. https://doi.org/10.1111/j.1742-4658.2009.07208.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

None.

Funding

This study was partly supported by JSPS KAKENHI (Grant Number: 17K09544, 18K08091).

Author information

Authors and Affiliations

Authors

Contributions

ML and CZ designed the study. ML and CZ performed the measurements and statistical analyses and drafted the manuscript. TK, MI, KU, TA, and MS joined in interpreting the data. ML and CZ wrote and edited, while TK and MS reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Meihua Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The care of animals and all animal experiments were performed in strict accordance with the guiding principles of the Physiological Society of Japan and the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publications No 85-23, revised 1996). All protocols were reviewed and approved by the Animal Subject Committee in the National Cerebral and Cardiovascular Center.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zheng, C., Kawada, T. et al. Impact of Peripheral α7-Nicotinic Acetylcholine Receptors on Cardioprotective Effects of Donepezil in Chronic Heart Failure Rats. Cardiovasc Drugs Ther 35, 877–888 (2021). https://doi.org/10.1007/s10557-020-07062-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07062-1

Keywords

Navigation