Skip to main content
Log in

Oral Glyburide, But Not Glimepiride, Blocks the Infarct-Size Limiting Effects of Pioglitazone

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Many patients with type 2 diabetes mellitus receive several oral hypoglycemic agents, including sulfonylurea drugs. Intravenous glyburide (Glyb), a sulfonylurea agent, blocks the protective effects of “ischemic” and pharmacologic preconditioning in various animal models without affecting myocardial infarct size when administered alone. However, there are conflicting results when other sulfonylurea drugs are used. Pioglitazone (PIO) reduces infarct size in the rat. We asked whether oral Glyb and glimepiride (Glim) affect the infarct size-limiting effects of PIO.

Methods

Sprague–Dawley rats received 3-day oral treatment with: PIO (5 mg/kg/day); PIO + Glyb (10 mg/kg/day); PIO + Glim (4 mg/kg/day) or water alone (experiment 1) or PIO (5 mg/kg/day) with or without 5-hydroxydecanoate (5HD, 10 mg/kg), a specific mitochondrial ATP-sensitive K+ channels inhibitor, administered intravenously 30 min before coronary artery ligation. PIO, Glyb and Glim were administered by oral gavage. Sugar 5% was added to water to prevent hypoglycemia. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion (n = 6 in each group). Ischemic area at risk was assessed by blue dye and infarct size by triphenyl-tetrazolium-chloride.

Results

Body weight and the size of the area at risk were comparable among groups. Infarct size (% of the area at risk) was significantly smaller in the PIO (14.3 ± 1.1%; p < 0.001) and PIO + Glim (13.2 ± 0.8%; p < 0.001) groups than in the control group (37.7 ± 1.2%). Glyb completely blocked the effect of PIO (43.0 ± 1.7%; p < 0.001). Glim did not affect the protective effect of PIO (p = 0.993). 5HD blocked the protective effect of PIO (infarct size 48.5 ± 0.8% versus 14.8 ± 0.6%, respectively; p < 0.0001). In conclusion, the infarct size limiting effects of PIO are dependent on activation of mitochondrial ATP-sensitive K+ channels. Oral Glyb, but not Glim, blocks the infarct size limiting effects of PIO. It is plausible that Glyb affects other pleiotropic effects of PIO and thus may attenuate favorable effects on cardiovascular outcomes. In contrast, Glim does not attenuate the protective effect of PIO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ryden L, Standl E, Bartnik M, Van den Berghe G, Betteridge J, de Boer MJ, et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 2007;28:88–136.

    Article  PubMed  CAS  Google Scholar 

  2. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–34.

    Article  PubMed  CAS  Google Scholar 

  3. Mukamal KJ, Nesto RW, Cohen MC, Muller JE, Maclure M, Sherwood JB, et al. Impact of diabetes on long-term survival after acute myocardial infarction: comparability of risk with prior myocardial infarction. Diabetes Care 2001;24:1422–7.

    Article  PubMed  CAS  Google Scholar 

  4. Stranders I, Diamant M, van Gelder RE, Spruijt HJ, Twisk JW, Heine RJ, et al. Admission blood glucose level as risk indicator of death after myocardial infarction in patients with and without diabetes mellitus. Arch Intern Med 2004;164:982–8.

    Article  PubMed  Google Scholar 

  5. Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T, et al. Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2008;117:1610–9.

    Article  PubMed  Google Scholar 

  6. Davis TM, Parsons RW, Broadhurst RJ, Hobbs MS, Jamrozik K. Arrhythmias and mortality after myocardial infarction in diabetic patients. Relationship to diabetes treatment. Diabetes Care 1998;21:637–40.

    Article  PubMed  CAS  Google Scholar 

  7. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002;106:2067–72.

    Article  PubMed  CAS  Google Scholar 

  8. Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes 1996;45:954–9.

    Article  PubMed  Google Scholar 

  9. Ito H, Nakano A, Kinoshita M, Matsumori A. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia/reperfusion injury in a rat model. Laboratory investigation; a journal of technical methods and pathology. 2003;83:1715–1721.

  10. Scognamiglio R, Negut C, De Kreutzenberg SV, Tiengo A, Avogaro A. Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation 2005;112:179–84.

    Article  PubMed  Google Scholar 

  11. Pandolfi A, Cetrullo D, Polishuck R, Alberta MM, Calafiore A, Pellegrini G, et al. Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 2001;21:1378–82.

    Article  PubMed  CAS  Google Scholar 

  12. Pandolfi A, Giaccari A, Cilli C, Alberta MM, Morviducci L, De Filippis EA, et al. Acute hyperglycemia and acute hyperinsulinemia decrease plasma fibrinolytic activity and increase plasminogen activator inhibitor type 1 in the rat. Acta Diabetol 2001;38:71–6.

    Article  PubMed  CAS  Google Scholar 

  13. Watala C, Pluta J, Golanski J, Rozalski M, Czyz M, Trojanowski Z, et al. Increased protein glycation in diabetes mellitus is associated with decreased aspirin-mediated protein acetylation and reduced sensitivity of blood platelets to aspirin. J Mol Med 2005;83:148–58.

    Article  PubMed  CAS  Google Scholar 

  14. Worthley MI, Holmes AS, Willoughby SR, Kucia AM, Heresztyn T, Stewart S, et al. The deleterious effects of hyperglycemia on platelet function in diabetic patients with acute coronary syndromes mediation by superoxide production, resolution with intensive insulin administration. J Am Coll Cardiol 2007;49:304–10.

    Article  PubMed  CAS  Google Scholar 

  15. Kersten JR, Toller WG, Tessmer JP, Pagel PS, Warltier DC. Hyperglycemia reduces coronary collateral blood flow through a nitric oxide-mediated mechanism. Am J Physiol 2001;281:H2097–104.

    CAS  Google Scholar 

  16. Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, et al. Effect of acute hyperglycemia on the ischemic preconditioning effect of prodromal angina pectoris in patients with a first anterior wall acute myocardial infarction. Am J Cardiol 2003;92:288–91.

    Article  PubMed  Google Scholar 

  17. Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, et al. Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol 2001;280:H1744–50.

    CAS  Google Scholar 

  18. Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol 1998;275:H721–5.

    PubMed  CAS  Google Scholar 

  19. Worthley MI, Shrive FM, Anderson TJ, Traboulsi M. Prognostic implication of hyperglycemia in myocardial infarction and primary angioplasty. Am J Med 2007;120:643.e1–7.

    Article  Google Scholar 

  20. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005;366:1279–89.

    Article  PubMed  CAS  Google Scholar 

  21. Wilcox R, Kupfer S, Erdmann E. Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from PROspective pioglitAzone Clinical Trial In macro Vascular Events (PROactive 10). Am Heart J 2008;155:712–7.

    Article  PubMed  CAS  Google Scholar 

  22. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007;298:1180–8.

    Article  PubMed  CAS  Google Scholar 

  23. Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia–reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol 2008;44:915–26.

    Article  PubMed  CAS  Google Scholar 

  24. Wynne AM, Mocanu MM, Yellon DM. Pioglitazone mimics preconditioning in the isolated perfused rat heart: a role for the prosurvival kinases PI3K and P42/44MAPK. J Cardiovasc Pharmacol 2005;46:817–22.

    Article  PubMed  CAS  Google Scholar 

  25. Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, et al. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol 2006;291:H158–69.

    Google Scholar 

  26. O’Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res 2000;87:845–55.

    PubMed  CAS  Google Scholar 

  27. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992;26:1054–62.

    Article  PubMed  CAS  Google Scholar 

  28. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223–33.

    PubMed  CAS  Google Scholar 

  29. Munch-Ellingsen J, Bugge E, Ytrehus K. Blockade of the KATP-channel by glibenclamide aggravates ischemic injury, and counteracts ischemic preconditioning. Basic Res Cardiol 1996;91:382–8.

    PubMed  CAS  Google Scholar 

  30. Qian YZ, Levasseur JE, Yoshida K, Kukreja RC. KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol 1996;271:H23–8.

    PubMed  CAS  Google Scholar 

  31. Walsh RS, Tsuchida A, Daly JJ, Thornton JD, Cohen MV, Downey JM. Ketamine–xylazine anaesthesia permits a KATP channel antagonist to attenuate preconditioning in rabbit myocardium. Cardiovasc Res 1994;28:1337–41.

    Article  PubMed  CAS  Google Scholar 

  32. Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 1999;276:H1323–30.

    PubMed  CAS  Google Scholar 

  33. Iwai T, Tanonaka K, Koshimizu M, Takeo S. Preservation of mitochondrial function by diazoxide during sustained ischaemia in the rat heart. Br J Pharmacol 2000;129:1219–27.

    Article  PubMed  CAS  Google Scholar 

  34. Wang S, Cone J, Liu Y. Dual roles of mitochondrial K(ATP) channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol 2001;280:H246–55.

    CAS  Google Scholar 

  35. Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC. Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol 1999;277:H128–35.

    PubMed  CAS  Google Scholar 

  36. Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken AH. Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K + channel. J Mol Cell Cardiol 1997;29:175–82.

    Article  PubMed  CAS  Google Scholar 

  37. Mocanu MM, Gadgil S, Yellon DM, Baxter GF. Mibefradil, a T-type and L-type calcium channel blocker, limits infarct size through a glibenclamide-sensitive mechanism. Cardiovasc Drugs Ther 1999;13:115–22.

    Article  PubMed  CAS  Google Scholar 

  38. D’Souza SP, Yellon DM, Martin C, Schulz R, Heusch G, Onody A, et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via KATP channel opening. Am J Physiol 2003;284:H1592–600.

    CAS  Google Scholar 

  39. Wang GY, Wu S, Pei JM, Yu XC, Wong TM. Kappa- but not delta-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhythmia in rats. Am J Physiol 2001;280:H384–91.

    CAS  Google Scholar 

  40. Schultz JE, Hsu AK, Gross GJ. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 1996;78:1100–4.

    PubMed  CAS  Google Scholar 

  41. Elliott GT, Comerford ML, Smith JR, Zhao L. Myocardial ischemia/reperfusion protection using monophosphoryl lipid A is abrogated by the ATP-sensitive potassium channel blocker, glibenclamide. Cardiovasc Res 1996;32:1071–80.

    Article  PubMed  CAS  Google Scholar 

  42. Krenz M, Baines CP, Heusch G, Downey JM, Cohen MV. Acute alcohol-induced protection against infarction in rabbit hearts: differences from and similarities to ischemic preconditioning. J Mol Cell Cardiol 2001;33:2015–22.

    Article  PubMed  CAS  Google Scholar 

  43. Joyeux M, Bouchard JF, Lamontagne D, Godin-Ribuot D, Ribuot C. Heat stress-induced protection of endothelial function against ischaemic injury is abolished by ATP-sensitive potassium channel blockade in the isolated rat heart. Br J Pharmacol 2000;130:345–50.

    Article  PubMed  CAS  Google Scholar 

  44. Joyeux M, Godin-Ribuot D, Ribuot C. Resistance to myocardial infarction induced by heat stress and the effect of ATP-sensitive potassium channel blockade in the rat isolated heart. Br J Pharmacol 1998;123:1085–8.

    Article  PubMed  CAS  Google Scholar 

  45. Tavackoli S, Ashitkov T, Hu ZY, Motamedi M, Uretsky BF, Birnbaum Y. Simvastatin-induced myocardial protection against ischemia–reperfusion injury is mediated by activation of ATP-sensitive K + channels. Coron Artery Dis 2004;15:53–8.

    Article  PubMed  Google Scholar 

  46. Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 2002;110:212–8.

    Article  PubMed  CAS  Google Scholar 

  47. Maddock HL, Siedlecka SM, Yellon DM. Myocardial protection from either ischaemic preconditioning or nicorandil is not blocked by gliclazide. Cardiovasc Drugs Ther 2004;18:113–9.

    Article  PubMed  CAS  Google Scholar 

  48. Riveline JP, Danchin N, Ledru F, Varroud-Vial M, Charpentier G. Sulfonylureas and cardiovascular effects: from experimental data to clinical use. Available data in humans and clinical applications. Diabetes Metab 2003;29:207–22.

    Article  PubMed  CAS  Google Scholar 

  49. Gribble FM, Ashcroft FM. Sulfonylurea sensitivity of adenosine triphosphate-sensitive potassium channels from beta cells and extrapancreatic tissues. Metabolism 2000;49:3–6.

    Article  PubMed  CAS  Google Scholar 

  50. Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity. J Biol Chem 2005;280:23653–9.

    Article  PubMed  CAS  Google Scholar 

  51. Inukai K, Watanabe M, Nakashima Y, Takata N, Isoyama A, Sawa T, et al. Glimepiride enhances intrinsic peroxisome proliferator-activated receptor-gamma activity in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2005;328:484–90.

    Article  PubMed  CAS  Google Scholar 

  52. Horimoto H, Nakai Y, Mieno S, Nomura Y, Nakahara K, Sasaki S. Oral hypoglycemic sulfonylurea glimepiride preserves the myoprotective effects of ischemic preconditioning. J Surg Res 2002;105:181–8.

    Article  PubMed  CAS  Google Scholar 

  53. Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 2001;103:3111–6.

    PubMed  CAS  Google Scholar 

  54. Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999;20:439–46.

    Article  PubMed  CAS  Google Scholar 

  55. Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab 2003;88:531–7.

    Article  PubMed  CAS  Google Scholar 

  56. Peskar BM, Ehrlich K, Peskar BA. Role of ATP-sensitive potassium channels in prostaglandin-mediated gastroprotection in the rat. J Pharmacol Exp Ther 2002;301:969–74.

    Article  PubMed  CAS  Google Scholar 

  57. El-Reyani NE, Bozdogan O, Baczko I, Lepran I, Papp JG. Comparison of the efficacy of glibenclamide and glimepiride in reperfusion-induced arrhythmias in rats. Eur J Pharmacol 1999;365:187–92.

    Article  PubMed  CAS  Google Scholar 

  58. Birnbaum Y, Lin Y, Ye Y, Merla R, Perez-Polo JR, Uretsky BF. Pretreatment with high-dose statin, but not low-dose statin, ezetimibe, or the combination of low-dose statin and ezetimibe, limits infarct size in the rat. J Cardiovasc Pharmacol Ther 2008;13:72–9.

    Article  PubMed  CAS  Google Scholar 

  59. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu ZY, Schwarz ER, et al. Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia–reperfusion injury. Cardiovasc Res 2005;65:345–55.

    Article  PubMed  CAS  Google Scholar 

  60. Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, et al. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther 2007;21:321–30.

    Article  PubMed  CAS  Google Scholar 

  61. Ye Y, Abu Said GH, Lin Y, Manickavasagam S, Hughes MG, McAdoo DJ, et al. Caffeinated coffee blunts the myocardial protective effects of statins against ischemia–reperfusion injury in the rat. Cardiovasc Drugs Ther 2008;22:275–82.

    Article  PubMed  CAS  Google Scholar 

  62. Ye Y, Lin Y, Perez-Polo R, Huang MH, Hughes MG, McAdoo DJ, et al. Enhanced cardioprotection against ischemia–reperfusion injury with a dipyridamole and low-dose atorvastatin combination. Am J Physiol Heart Circ Physiol 2007;293:H813–8.

    Article  PubMed  CAS  Google Scholar 

  63. Toombs CF, McGee DS, Johnston WE, Vinten-Johansen J. Protection from ischaemic–reperfusion injury with adenosine pretreatment is reversed by inhibition of ATP sensitive potassium channels. Cardiovasc Res 1993;27:623–9.

    Article  PubMed  CAS  Google Scholar 

  64. Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S, Negut C, Palisi M, Bagolin E, et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes 2002;51:808–12.

    Article  PubMed  CAS  Google Scholar 

  65. Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970;19:789–830.

    PubMed  Google Scholar 

  66. Garratt KN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR Jr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999;33:119–24.

    Article  PubMed  CAS  Google Scholar 

  67. Johnsen SP, Monster TB, Olsen ML, Thisted H, McLaughlin JK, Sorensen HT, et al. Risk and short-term prognosis of myocardial infarction among users of antidiabetic drugs. Am J Ther 2006;13:134–40.

    Article  PubMed  CAS  Google Scholar 

  68. Simpson SH, Majumdar SR, Tsuyuki RT, Eurich DT, Johnson JA. Dose–response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ 2006;174:169–74.

    PubMed  Google Scholar 

  69. Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 2006;49:930–6.

    Article  PubMed  CAS  Google Scholar 

  70. Jollis JG, Simpson RJ Jr, Cascio WE, Chowdhury MK, Crouse JR 3rd, Smith SC Jr. Relation between sulfonylurea therapy, complications, and outcome for elderly patients with acute myocardial infarction. Am Heart J 1999;138:S376–80.

    Article  PubMed  CAS  Google Scholar 

  71. Danchin N, Charpentier G, Ledru F, Vaur L, Gueret P, Hanania G, et al. Role of previous treatment with sulfonylureas in diabetic patients with acute myocardial infarction: results from a nationwide French registry. Diabetes Metab Res Rev 2005;21:143–9.

    Article  PubMed  CAS  Google Scholar 

  72. Lee K, Ibbotson T, Richardson PJ, Boden PR. Inhibition of KATP channel activity by troglitazone in CRI-G1 insulin-secreting cells. Eur J Pharmacol 1996;313:163–7.

    Article  PubMed  CAS  Google Scholar 

  73. Lee K, Boden P. Troglitazone inhibits type 2KATP channel activity and depolarises tolbutamide-sensitive neurones in the rat ventromedial hypothalamus. Brain Res 1997;751:165–8.

    Article  PubMed  CAS  Google Scholar 

  74. Sunaga Y, Inagaki N, Gonoi T, Yamada Y, Ishida H, Seino Y, et al. Troglitazone but not pioglitazone affects ATP-sensitive K(+) channel activity. Eur J Pharmacol 1999;381:71–6.

    Article  PubMed  CAS  Google Scholar 

  75. Irat AM, Aslamaci S, Karasu C, Ari N. Alteration of vascular reactivity in diabetic human mammary artery and the effects of thiazolidinediones. J Pharm Pharmacol 2006;58:1647–53.

    Article  PubMed  CAS  Google Scholar 

  76. Lu L, Reiter MJ, Xu Y, Chicco A, Greyson CR, Schwartz GG. Thiazolidinedione drugs block cardiac KATP channels and may increase propensity for ischaemic ventricular fibrillation in pigs. Diabetologia 2008;51:675–85.

    Article  PubMed  CAS  Google Scholar 

  77. Yang YJ, Zhao JL, You SJ, Wu YJ, Jing ZC, Gao RL, et al. Post-infarction treatment with simvastatin reduces myocardial no-reflow by opening of the KATP channel. Eur J Heart Fail 2007;9:30–6.

    Article  PubMed  CAS  Google Scholar 

  78. Zhao JL, Yang YJ, Cui CJ, You SJ, Gao RL. Pretreatment with simvastatin reduces myocardial no-reflow by opening mitochondrial K(ATP) channel. Br J Pharmacol 2006;149:243–9.

    Article  PubMed  CAS  Google Scholar 

  79. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008;299:1561–73.

    Article  PubMed  CAS  Google Scholar 

  80. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 2006;296:2572–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yochai Birnbaum.

Additional information

Grant Support

The Edward D. and Sally M. Futch Endowment of the Division of Cardiology, UTMB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Y., Lin, Y., Perez-Polo, J.R. et al. Oral Glyburide, But Not Glimepiride, Blocks the Infarct-Size Limiting Effects of Pioglitazone. Cardiovasc Drugs Ther 22, 429–436 (2008). https://doi.org/10.1007/s10557-008-6138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6138-3

Key words

Navigation