Skip to main content
Log in

The genomic regulation of metastatic dormancy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguirre-Ghiso, J. A. (2018). How dormant cancer persists and reawakens. Science, 361(6409), 1314–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banys-Paluchowski, M., Reinhardt, F., & Fehm, T. (2020). Disseminated tumor cells and dormancy in breast cancer progression. Advances in Experimental Medicine and Biology, 122035, 35–43.

  4. Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., Levine, H., Mani, S. A., & Wicha, M. S. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer, 7(1), 66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411.

    Article  CAS  PubMed  Google Scholar 

  6. Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 20(2), 211–221.

    Article  CAS  PubMed  Google Scholar 

  7. Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaitcik, S., & Brenner, H. J. (1979). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.

    Article  CAS  PubMed  Google Scholar 

  8. Harrell, J. C., Dye, W. W., Allred, D. C., Jedlicka, P., Spoelstra, N. S., Sartorius, C. A., & Horwitz, K. B. (2006). Estrogen receptor positive breast cancer metastasis: Altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Research, 66(18), 9308–9315.

    Article  CAS  PubMed  Google Scholar 

  9. Puchalapalli, M., Zeng, X., Mu, L., Anderson, A., Hix, G. L., Zhang, M., Sayyad, M. R., Mosticone, W. S., Clevenger, C. V., & Koblinski, J. E. (2016). NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE, 11(9), e0163521.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lefley, D., Howard, F., Arshad, F., Bradbury, S., Brown, H., Tulotta, C., Eyre, R., Alférez, D., Wilkinson, J. M., Holen, I., Clarke, R. B., & Ottewell, P. (2019). Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Research, 21(1), 130–1220.

  11. Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B. J., Lu, X., Haffty, B. G., Pantel, K., Massagué, J., & Kang, Y. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wada, M., Canals, D., Adada, M., Coant, N., Salama, M. F., Helke, K. L., Arthur, J. S., Shroyer, K. R., Kitatani, K., Obeid, L. M., & Hannun, Y. A. (2017). P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene., 36(47), 6649–6657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., & Green, J. E. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68(15), 6241–6250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rucci, N., Ricevuto, E., Ficorella, C., Longo, M., Perez, M., Di, G. C., Funari, A., Teti, A., & Migliaccio, S. (2004). In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone, 34(4), 697–709.

    Article  CAS  PubMed  Google Scholar 

  16. Sowder, M. E., & Johnson, R. W. (2018). Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Science Reports, 8(1), 14299.

    Article  Google Scholar 

  17. Carlson, P., Dasgupta, A., Grzelak, C. A., Kim, J., Barrett, A., Coleman, I. M., Shor, R. E., Goddard, E. T., Dai, J., Schweitzer, E. M., Lim, A. R., Crist, S. B., Cheresh, D. A., Nelson, P. S., Hansen, K. C., & Ghajar, C. M. (2019). Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 21(2), 238–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holen, I., Walker, M., Nutter, F., Fowles, A., Evans, C. A., Eaton, C. L., & Ottewell, P. D. (2016). Oestrogen receptor positive breast cancer metastasis to bone: Inhibition by targeting the bone microenvironment in vivo. Clinical and Experimental Metastasis, 33(3), 211–224.

    Article  CAS  PubMed  Google Scholar 

  19. Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De, S. E., & Massagué, J. (2016). Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165(1), 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, H., Chakraborty, G., Lee-Lim, A. P., Mo, Q., Decker, M., Vonica, A., Shen, R., Brogi, E., Brivanlou, A. H., & Giancotti, F. G. (2012). The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 150(4), 764–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montagner, M., Bhome, R., Hooper, S., Chakravarty, P., Qin, X., Sufi, J., Bhargava, A., Ratcliffe, C. D. H., Naito, Y., Pocaterra, A., Tape, C. J., & Sahai, E. (2020). Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 22(3), 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Cock, J. M., Shibue, T., Dongre, A., Keckesova, Z., Reinhardt, F., & Weinberg, R. A. (2016). Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Research, 76(23), 6778–6784.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Piranlioglu, R., Lee, E., Ouzounova, M., Bollag, R. J., Vinyard, A. H., Arbab, A. S., Marasco, D., Guzel, M., Cowell, J. K., Thangaraju, M., Chadli, A., Hassan, K. A., Wicha, M. S., Celis, E., & Korkaya, H. (2019). Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 10(1), 1430.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo, X. L., Deng, C. C., Su, X. D., Wang, F., Chen, Z., Wu, X. P., Liang, S. B., Liu, J. H., & Fu, L. W. (2018). Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Research, 78(13), 3532–3543.

    Article  CAS  PubMed  Google Scholar 

  26. Liang, X., Gu, J., Li, T., Zhao, L., Fu, X., Zhang, W., Wang, J., Shang, Z., Huang, W., & Zhou, J. (2018). PAX5 haploinsufficiency induce cancer cell dormancy in Raji cells. Experimental Cell Research, 367(1), 30–36.

    Article  CAS  PubMed  Google Scholar 

  27. Kleinsmith, L. J., & Pierce, G. B., Jr. (1964). Multipotentiality of single embryonal carcinoma cells. Cancer Research, 24, 1544–1551.

    CAS  PubMed  Google Scholar 

  28. Lawson, M. A., McDonald, M. M., Kovacic, N., Hua, K. W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil, D. T., Van, V. E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., … Croucher, P. I. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983.

    Article  CAS  PubMed  Google Scholar 

  29. Chery, L., Lam, H. M., Coleman, I., Lakely, B., Coleman, R., Larson, S., Aguirre-Ghiso, J. A., Xia, J., Gulati, R., Nelson, P. S., Montgomery, B., Lange, P., Snyder, L. A., Vessella, R. L., & Morrissey, C. (2014). Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 5(20), 9939–9951.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De, M. R. (2020). Tuning cancer fate: Tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Frontiers Immunology, 11, 2166.

    Article  CAS  Google Scholar 

  31. Jahangiri, L., & Ishola, T. (2022). Dormancy in breast cancer, the role of autophagy, lncRNAs, miRNAs and exosomes. International Journal of Molecular Science, 23(9), 5271.

    Article  CAS  Google Scholar 

  32. Korentzelos, D., Clark, A. M., & Wells, A. (2020). A perspective on therapeutic pan-resistance in metastatic cancer. International Journal of Molecular Science, 21(19), E7304.

    Article  Google Scholar 

  33. Baram, T., Rubinstein-Achiasaf, L., Ben-Yaakov, H., & Ben-Baruch, A. (2021). Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Frontiers Oncology, 10, 614468.

    Article  Google Scholar 

  34. Smart, J. A., Oleksak, J. E., & Hartsough, E. J. (2021). Cell Adhesion Molecules in Plasticity and Metastasis. Molecular Cancer Research, 19(1), 25–37.

    Article  CAS  PubMed  Google Scholar 

  35. Dhaliwal, D., & Shepherd, T. G. (2022). Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: A review. Clinical Experimental Metastasis, 39(2), 291–301.

    Article  CAS  PubMed  Google Scholar 

  36. Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genna, A., & Gil-Henn, H. (2018). FAK family kinases: The Yin and Yang of cancer cell invasiveness. Molecular and Cellular Oncology, 5(4), e1449584.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zavyalova, M. V., Denisov, E. V., Tashireva, L. A., Savelieva, O. E., Kaigorodova, E. V., Krakhmal, N. V., & Perelmuter, V. M. (2019). Intravasation as a key step in cancer metastasis. Biochemistry (Mosc), 84(7), 762–772.

    Article  CAS  PubMed  Google Scholar 

  39. Tajbakhsh, A., Rivandi, M., Abedini, S., Pasdar, A., & Sahebkar, A. (2019). Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Critical Reviews in Oncology and Hematology, 140, 17–27.

    Article  Google Scholar 

  40. Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021). Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Frontiers Oncology, 11, 626577.

    Article  Google Scholar 

  41. Khan, S. U., Fatima, K., & Malik, F. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical and Experimental Metastasis, 39(5), 715–726.

    Article  PubMed  Google Scholar 

  42. Liu, Y., Zhang, Y., Ding, Y., & Zhuang, R. (2021). Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Critical Reviews in Oncology and Hematology, 167, 103502.

    Article  Google Scholar 

  43. Reduzzi, C., Vismara, M., Gerratana, L., Silvestri, M., De, B. F., Raspagliesi, F., Verzoni, E., Di, C. S., Locati, L. D., Cristofanilli, M., Daidone, M. G., & Cappelletti, V. (2020). The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Seminars in Cancer Biology, 60, 344–350.

    Article  CAS  PubMed  Google Scholar 

  44. Hamilton, G., & Rath, B. (2017). Circulating tumor cell interactions with macrophages: Implications for biology and treatment. Translational Lung Cancer Research, 6(4), 418–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banys, M., Krawczyk, N., & Fehm, T. (2014). The role and clinical relevance of disseminated tumor cells in breast cancer. Cancers (Basel), 6(1), 143–152.

    Article  PubMed  Google Scholar 

  46. Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Reseach, 13, 245–71.

    Google Scholar 

  47. Ring, A., Spataro, M., Wicki, A., & Aceto, N. (2022). Clinical and biological aspects of disseminated tumor cells and dormancy in breast cancer. Frontiers in Cell and Developmental Biology, 10, 929893.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Illyes, I., Tokes, A. M., Kovacs, A., Szasz, A. M., Molnar, B. A., Molnar, I. A., Kaszas, I., Baranyak, Z., Laszlo, Z., Kenessey, I., & Kulka, J. (2014). In breast cancer patients sentinel lymph node metastasis characteristics predict further axillary involvement. Virchows Archives, 465(1), 15–24.

    Article  Google Scholar 

  49. Walter, S. D., Chao, D. L., Feuer, W., Schiffman, J., Char, D. H., & Harbour, J. W. (2016). Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmology, 134(7), 734–740.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wangchinda, P., & Ithimakin, S. (2016). Factors that predict recurrence later than 5 years after initial treatment in operable breast cancer. World Journal of Surgical Oncology, 14(1), 223–0988.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sopik, V., & Narod, S. A. (2018). The relationship between tumour size, nodal status and distant metastases: On the origins of breast cancer. Breast Cancer Research and Treatments, 170(3), 647–656.

    Article  Google Scholar 

  52. Asare, E. A., Silva-Figueroa, A., Hess, K. R., Busaidy, N., Graham, P. H., Grubbs, E. G., Lee, J. E., Williams, M. D., & Perrier, N. D. (2019). Risk of distant metastasis in parathyroid carcinoma and its effect on survival: A retrospective review from a high-volume center. Annals of Surgical Oncology, 26(11), 3593–3599.

    Article  PubMed  Google Scholar 

  53. Holmberg, L., Bill-Axelson, A., Helgesen, F., Salo, J. O., Folmerz, P., Häggman, M., Andersson, S. O., Spångberg, A., Busch, C., Nordling, S., Palmgren, J., Adami, H. O., Johansson, J. E., & Norlén, B. J. (2002). A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. New England Journal of Medicine, 347(11), 781–789.

    Article  PubMed  Google Scholar 

  54. Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.

    Article  CAS  PubMed  Google Scholar 

  55. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massagué, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.

    Article  CAS  PubMed  Google Scholar 

  56. Va’nt Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., & Friend, S. H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.

    Article  Google Scholar 

  57. Patsialou, A., Wang, Y., Lin, J., Whitney, K., Goswami, S., Kenny, P. A., & Condeelis, J. S. (2012). Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14(5), R139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato, S., Alsafar, A., Walavalkar, V., Hainsworth, J., & Kurzrock, R. (2021). Cancer of unknown primary in the molecular era. Trends in Cancer, 7(5), 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., Kaufmann, M., Diebold, J., Arnholdt, H., Muller, P., Bischoff, J., Harich, D., Schlimok, G., Riethmuller, G., Eils, R., & Klein, C. A. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences, USA, 100(13), 7737–7742.

    Article  CAS  Google Scholar 

  60. Hüsemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., Forni, G., Eils, R., Fehm, T., Riethmüller, G., & Klein, C. A. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.

    Article  PubMed  Google Scholar 

  61. Schardt, J. A., Meyer, M., Hartmann, C. H., Schubert, F., Schmidt-Kittler, O., Fuhrmann, C., Polzer, B., Petronio, M., Eils, R., & Klein, C. A. (2005). Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8(3), 227–239.

    Article  CAS  PubMed  Google Scholar 

  62. Harper, K. L., Sosa, M. S., Entenberg, D., Hosseini, H., Cheung, J. F., Nobre, R., Avivar-Valderas, A., Nagi, C., Girnius, N., Davis, R. J., Farias, E. F., Condeelis, J., Klein, C. A., & Aguirre-Ghiso, J. A. (2016). Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature, 540588-592.

  63. Fox, D. B., Garcia, N. M. G., McKinney, B. J., Lupo, R., Noteware, L. C., Newcomb, R., Liu, J., Locasale, J. W., Hirschey, M. D., & Alvarez, J. V. (2020). NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2(4), 318–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hartkopf, A. D., Brucker, S. Y., Taran, F. A., Harbeck, N., von Au, A., Naume, B., et al. (2021). Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. European Journal of Cancer, 154, 128–137.

    Article  CAS  PubMed  Google Scholar 

  65. Popawski, A. B., Jankowski, M., Erickson, S. W., de Díaz, S. T., Partridge, E. C., Crasto, C., et al. (2010). Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. European Journal of Human Genetics, 18(5), 560–568.

    Article  Google Scholar 

  66. Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer, 126(3), 589–598.

    Article  CAS  PubMed  Google Scholar 

  67. Gundem, G., Van, L. P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cackowski, F. C., Wang, Y., Decker, J. T., Sifuentes, C., Weindorf, S., Jung, Y., et al. (2019). Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer. Prostate, 79(14), 1715–1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Werner-Klein, M., Scheitler, S., Hoffmann, M., Hodak, I., Dietz, K., Lehnert, P., et al. (2018). Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nature Communications, 9(1), 595.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Werner-Klein, M., Grujovic, A., Irlbeck, C., Obradovic, M., Hoffmann, M., Koerkel-Qu, H., et al. (2020). Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nature Communications, 11(1), 4977–18701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tohme, S., Simmons, R. L., & Tsung, A. (2017). Surgery for cancer: A trigger for metastases. Cancer Research, 77(7), 1548–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.

    CAS  PubMed  Google Scholar 

  73. Yanagisawa, M., Huveldt, D., Kreinest, P., Lohse, C. M., Cheville, J. C., Parker, A. S., Copland, J. A., & Anastasiadis, P. Z. (2008). A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. Journal of Biological Chemistry, 283(26), 18344–18354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yumoto, K., Eber, M. R., Berry, J. E., Taichman, R. S., & Shiozawa, Y. (2014). Molecular pathways: Niches in metastatic dormancy. Clinical Cancer Research, 20(13), 3384–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adam, A. P., George, A., Schewe, D., Bragado, P., Iglesias, B. V., Ranganathan, A. C., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2009). Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Research, 69(14), 5664–5672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, X., Wu, J. S., Li, M., Zhang, W. L., Gao, X. L., Wang, H. F., et al. (2021). Inhibition of DEC2 is necessary for exiting cell dormancy in salivary adenoid cystic carcinoma. Journal of Experimental Clinical Cancer Research, 40(1), 169–01956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McGrath, J. E., Panzica, L., Ransom, R., Withers, H. G., & Gelman, I. H. (2019). Identification of genes regulating breast cancer dormancy in 3D bone endosteal niche cultures. Molecular Cancer Research, 17(4), 1541–7786.

    Article  Google Scholar 

  78. Guereño, M., Delgado, P. M., Lugones, A. C., Cercato, M., Todaro, L., Urtreger, A., & Peters, M. G. (2020). Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. European Journal of Cell Biology, 99(6), 151096.

    Article  PubMed  Google Scholar 

  79. Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proceedings of the National Academy of Sciences, USA, 105(30), 10519–10524.

    Article  CAS  Google Scholar 

  80. Yamaguchi, M. (2005). Role of regucalcin in maintaining cell homeostasis and function (review). International Journal of Molecular Medicine, 15(3), 371–389.

    CAS  PubMed  Google Scholar 

  81. Sharma, S., Pei, X., Xing, F., Wu, S. Y., Wu, K., Tyagi, A., Zhao, D., Deshpande, R., Ruiz, M. G., Singh, R., Lyu, F., & Watabe, K. (2020). Regucalcin promotes dormancy of prostate cancer. Oncogene, 40(5), 1012–1026.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M., & Steeg, P. S. (2008). The role of metastasis suppressor genes in metastatic dormancy. APMIS., 116(7–8), 586–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gelman, I. H. (2012). Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Review, 31(3–4), 493–500.

    Article  CAS  Google Scholar 

  84. Kim, R. S., Avivar-Valderas, A., Estrada, Y., Bragado, P., Sosa, M. S., Aguirre-Ghiso, J. A., & Segall, J. E. (2012). Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE, 7(4), e35569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., Zhou, A., Eyob, H., Balakrishnan, S., Wang, C. Y., Yaswen, P., Goga, A., & Werb, Z. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, H., Chakraborty, G., Lee-Lim, A. P., Mavrakis, K. J., Wendel, H. G., & Giancotti, F. G. (2014). Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proceedings of the National Academy of Sciences, U.S.A, 111(46), 16532–16537.

    Article  CAS  Google Scholar 

  87. Dudgeon, C., Harris, C. R., Chen, Y., Ghaddar, B., Sharma, A., Shah, M. M., Roberts, A. I., Casabianca, A., Collisson, E. A., Balachandran, V. P., Vertino, P. M., De, S., & Carpizo, D. R. (2020). A novel model of pancreatic cancer dormancy reveals mechanistic insights and a dormancy gene signature with human relevance. BioRxiv. https://doi.org/10.1101/2020.04.13.037374

    Article  Google Scholar 

  88. Uzuner, D., Akkoç, Y., Peker, N., Pir, P., Gözüaçik, D., & Çakir, T. (2021). Transcriptional landscape of cellular networks reveal interactions driving the dormancy mechanisms in cancer. Science Reports, 11(1), 15806–94005.

    Article  CAS  Google Scholar 

  89. Quayle, L. A., Spicer, A., Ottewell, P. D., & Holen, I. (2021). Transcriptomic profiling reveals novel candidate genes and signalling programs in breast cancer quiescence and dormancy. Cancers (Basel), 13(16), 3922.

    Article  CAS  PubMed  Google Scholar 

  90. Ren, Q., Khoo, W. H., Corr, A. P., Phan, T. G., Croucher, P. I., & Stewart, S. A. (2022). Gene expression predicts dormant metastatic breast cancer cell phenotype. Breast Cancer Research, 24(1), 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Janghorban, M., Yang, Y., Zhao, N., Hamor, C., Nguyen, T. M., Zhang, X. H., & Rosen, J. M. (2022). Single-Cell analysis unveils the role of the tumor immune microenvironment and notch signaling in dormant minimal residual disease. Cancer Research, 82(5), 885–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Son, J., Lee, J. H., Kim, H. N., Ha, H., & Lee, Z. H. (2010). cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction. Biochemical and Biophysical Research Communications, 398(2), 309–314.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson, R. W., Sun, Y., Ho, P. W. M., Chan, A. S. M., Johnson, J. A., Pavlos, N. J., Sims, N. A., & Martin, T. J. (2018). Parathyroid hormone-related protein negatively regulates tumor cell dormancy genes in a PTHR1/cyclic AMP-independent manner. Frontiers in Endocrinology (Lausanne), 9, 241.

    Article  Google Scholar 

  94. La Belle, F. A., Calhoun, B. C., Sharma, A., Chang, J. C., Almasan, A., & Schiemann, W. P. (2019). Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nature Communications, 10(1), 3668–11640.

    Article  Google Scholar 

  95. Blessing, A. M., Santiago-O’Farrill, J. M., Mao, W., Pang, L., Ning, J., Pak, D., et al. (2020). Elimination of dormant, autophagic ovarian cancer cells and xenografts through enhanced sensitivity to anaplastic lymphoma kinase inhibition. Cancer, 126(15), 3579–3592.

    Article  CAS  PubMed  Google Scholar 

  96. Onoyama, I., & Nakayama, K. I. (2008). Fbxw7 in cell cycle exit and stem cell maintenance: Insight from gene-targeted mice. Cell Cycle, 7(21), 3307–3313.

    Article  CAS  PubMed  Google Scholar 

  97. Iriuchishima, H., Takubo, K., Matsuoka, S., Onoyama, I., Nakayama, K. I., Nojima, Y., & Suda, T. (2011). Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7a; overexpression. Blood, 117(8), 2373–2377.

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, J., Zheng, M., Zhang, M., Yang, X., Li, L., Wang, S. S., Wu, J. S., Yu, X. H., Wu, J. B., Pang, X., Tang, Y. J., Tang, Y. L., & Liang, X. H. (2019). PRRX1 regulates cellular phenotype plasticity and dormancy of head and neck squamous cell carcinoma through miR-642b-3p. Neoplasia., 21(2), 216–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sosa, M. S., Parikh, F., Maia, A. G., Estrada, Y., Bosch, A., Bragado, P., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nature Communications, 6, 6170.

    Article  CAS  PubMed  Google Scholar 

  100. Satcher, R. L., & Zhang, X. H. (2021). Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer, 22(2), 85–101.

    Article  PubMed  Google Scholar 

  101. Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ju, S., Wang, F., Wang, Y., & Ju, S. (2020). CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Molecular Cancer, 19(1), 168–01285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, R., Roy, A. M., Tokumaru, Y., Gandhi, S., Asaoka, M., Oshi, M., Yan, L., Ishikawa, T., & Takabe, K. (2022). NR2F1, a tumor dormancy marker, is expressed predominantly in cancer-associated fibroblasts and is associated with suppressed breast cancer cell proliferation. Cancers (Basel), 14(12), 2962.

    Article  CAS  PubMed  Google Scholar 

  104. Sanchez, C. A., Yamamoto, T., Kawamura, Y., Hironaka-Mitsuhashi, A., Ono, M., Tsuda, H., Shimomura, A., Tamura, K., Takeshita, F., Ochiya, T., & Yamamoto, Y. (2020). Long non-coding NR2F1-AS1 is associated with tumor recurrence in estrogen receptor-positive breast cancers. Molecular Oncology, 14(9), 2271–2287.

    Article  Google Scholar 

  105. Liu, Y., Zhang, P., Wu, Q., Fang, H., Wang, Y., Xiao, Y., Cong, M., Wang, T., He, Y., Ma, C., Tian, P., Liang, Y., Qin, L. X., Yang, Q., Yang, Q., Liao, L., & Hu, G. (2021). Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and DNp63. Nature Communications, 12(1), 5232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, X., Wang, F., Wu, X., Li, Z., Wang, Z., Ren, X., Zhou, Y., Song, F., Liang, Y., Zeng, Z., Liao, W., Ding, Y., Liao, W., & Liang, L. (2020). FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death and Disease, 11(8), 622–02870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gooding, A. J., & Schiemann, W. P. (2020). Epithelial-mesenchymal transition programs and cancer stem cell phenotypes: Mediators of breast cancer therapy resistance. Molecular Cancer Research, 18(9), 1257–1270.

    Article  CAS  PubMed  Google Scholar 

  108. Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., et al. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clements, M. E., Holtslander, L., Edwards, C., Todd, V., Dooyema, S. D. R., Bullock, K., Bergdorf, K., Zahnow, C. A., Connolly, R. M., & Johnson, R. W. (2021). HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene, 40(34), 5314–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nature Cell Biology, 15(11), 1351–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ribatti, D., Mangialardi, G., & Vacca, A. (2006). Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clinical Experimental Medicine, 6(4), 145–149.

    Article  CAS  PubMed  Google Scholar 

  112. Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS ONE, 10(6), e0130565.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yumoto, K., Eber, M. R., Wang, J., Cackowski, F. C., Decker, A. M., Lee, E., Nobre, A. R., Aguirre-Ghiso, J. A., Jung, Y., & Taichman, R. S. (2016). Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Reports, 6, 36520.

    CAS  Google Scholar 

  114. Burstyn-Cohen, T., & Maimon, A. (2019). TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Communication and Signaling, 17(1), 156–0461.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Axelrod, H. D., Valkenburg, K. C., Amend, S. R., Hicks, J. L., Parsana, P., Torga, G., DeMarzo, A. M., & Pienta, K. J. (2018). AXL is a putative tumor suppressor and dormancy regulator in prostate cancer. Molecular Cancer Research, 17(2), 356–369.

    Article  PubMed  Google Scholar 

  116. Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A., Yumoto, K., Berry, J. E., Lee, E., Shiozawa, Y., Jung, Y., Aguirre-Ghiso, J. A., & Taichman, R. S. (2016). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. Journal of Cell Biochemistry, 118(4), 891–902.

    Article  Google Scholar 

  117. Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., Pai, S. K., Liu, W., Fukuda, K., Chambers, C., Wilber, A., & Watabe, K. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. Journal of Experimental Medicine, 208(13), 2641–2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eckhardt, B. L., Cao, Y., Redfern, A. D., Chi, L. H., Burrows, A. D., Roslan, S., Sloan, E. K., Parker, B. S., Loi, S., Ueno, N. T., Lau, P. K. H., Latham, B., & Anderson, R. L. (2020). Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Research, 80(6), 1304–1315.

    Article  CAS  PubMed  Google Scholar 

  119. Nobre, A. R., Risson, E., Singh, D. K., Di Martino, J. S., Cheung, J. F., Wang, J., Johnson, J., Russnes, H. G., Bravo-Cordero, J. J., Birbrair, A., Naume, B., Azhar, M., Frenette, P. S., & Aguirre-Ghiso, J. A. (2021). Bone marrow NG2(+)/Nestin(+) mesenchymal stem cells drive DTC dormancy via TGFb2. Nature Cancer, 2(3), 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Prunier, C., Baker, D., Ten, D. P., & Ritsma, L. (2019). TGF-b family signaling pathways in cellular dormancy. Trends in Cancer, 5(1), 66–78.

    Article  CAS  PubMed  Google Scholar 

  121. Sharma, S., Xing, F., Liu, Y., Wu, K., Said, N., Pochampally, R., Shiozawa, Y., Lin, H. K., Balaji, K. C., & Watabe, K. (2016). Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. Journal of Biological Chemistry, 291(37), 19351–19363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cassar, L., Li, H., Pinto, A. R., Nicholls, C., Bayne, S., & Liu, J. P. (2008). Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Research, 68(22), 9157–9166.

    Article  CAS  PubMed  Google Scholar 

  123. Nahm, J. H., Yang, W. I., & Yoon, S. O. (2020). Forkhead Box C1 (FOXC1) Expression in stromal cells within the microenvironment of T and NK Cell Lymphomas: Association with tumor dormancy and activation. Cancer Research and Treatments, 52(4), 1273–1282.

    CAS  Google Scholar 

  124. Zangrossi, M., Romani, P., Chakravarty, P., Ratcliffe, C. D. H., Hooper, S., Dori, M., Forcato, M., Bicciato, S., Dupont, S., Sahai, E., & Montagner, M. (2021). EphB6 regulates TFEB-lysosomal pathway and survival of disseminated indolent breast cancer cells. Cancers (Basel), 13(5), 1079.

    Article  CAS  PubMed  Google Scholar 

  125. Visan, K. S., Lobb, R. J., & Moller, A. (2020). The role of exosomes in the promotion of epithelial-to-mesenchymal transition and metastasis. Frontiers in Bioscience (Landmark Ed.), 251022-1057.

  126. Attaran, S., & Bissell, M. J. (2021). The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in Cancer Biology, 78, 35–44.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., & Ochiya, T. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 7(332), ra63.

    Article  PubMed  Google Scholar 

  128. Li, X., Yang, J., Bao, M., Zeng, K., Fu, S., Wang, C., & Ye, L. (2018). Wnt signaling in bone metastasis: Mechanisms and therapeutic opportunities. Life Sciences, 208, 33–45.

    Article  CAS  PubMed  Google Scholar 

  129. Ren, D., Dai, Y., Yang, Q., Zhang, X., Guo, W., Ye, L., Huang, S., Chen, X., Lai, Y., Du, H., Lin, C., Peng, X., & Song, L. (2019). Wnt5a induces and maintains prostate cancer cells dormancy in bone. Journal of Experimental Medicine, 216(2), 428–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fane, M. E., Chhabra, Y., Alicea, G. M., Maranto, D. A., Douglass, S. M., Webster, M. R., et al. (2022). Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 606(7913), 396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, E., Yang, J., Ku, M., Kim, N. H., Park, Y., Park, C. B., Suh, J. S., Park, E. S., Yook, J. I., Mills, G. B., Huh, Y. M., & Cheong, J. H. (2015). Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death and Disease, 6, e1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-b dictates disseminated tumour cell fate in target organs through TGF-b-RIII and p38a signalling. Nature Cell Biology, 15(11), 1351–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hernandez, S., Serrano, A. G., & Solis Soto, L. M. (2022). The role of nerve fibers in the tumor immune microenvironment of solid tumors. Advanced Biology (Weinh), 6(9), e2200046.

    Article  Google Scholar 

  134. Erin, N., Shurin, G. V., Baraldi, J. H., & Shurin, M. R. (2022). Regulation of carcinogenesis by sensory neurons and neuromediators. Cancers (Basel), 14(9), 2333.

    Article  CAS  PubMed  Google Scholar 

  135. Roda, N., Blandano, G., & Pelicci, P. G. (2021). Blood vessels and peripheral nerves as key players in cancer progression and therapy resistance. Cancers (Basel), 13(17), 4471.

    Article  CAS  PubMed  Google Scholar 

  136. Mulcrone, P. L., Campbell, J. P., Clément-Demange, L., Anbinder, A. L., Merkel, A. R., Brekken, R. A., Sterling, J. A., & Elefteriou, F. (2017). Skeletal colonization by breast cancer cells is stimulated by an osteoblast and b2AR-dependent neo-angiogenic switch. Journal of Bone Mineral Research, 32(7), 1442–1454.

    Article  CAS  PubMed  Google Scholar 

  137. Dai, J., Cimino, P. J., Gouin, K. H., III., Grzelak, C. A., Barrett, A., Lim, A. R., et al. (2022). Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 3(1), 25–42.

    Article  CAS  PubMed  Google Scholar 

  138. Ni, B., Li, Q., Zhuang, C., Huang, P., Xia, X., Yang, L., Ma, X., Huang, C., Zhao, W., Tu, L., Shen, Y., Zhu, C., Zhang, Z., Zhao, E., Wang, M., & Cao, H. (2022). The nerve-tumour regulatory axis GDNF-GFRA1 promotes tumour dormancy, imatinib resistance and local recurrence of gastrointestinal stromal tumours by achieving autophagic flux. Cancer Letters, 535, 215639.

    Article  CAS  PubMed  Google Scholar 

  139. Touil, Y., Segard, P., Ostyn, P., Begard, S., Aspord, C., El Machhour, M. R., et al. (2016). Melanoma dormancy in a mouse model is linked to GILZ/FOXO3A-dependent quiescence of disseminated stem-like cells. Science Reports, 6, 30405.

    Article  CAS  Google Scholar 

  140. Liburkin-Dan, T., Toledano, S., & Neufeld, G. (2022). Lysyl oxidase family enzymes and their role in tumor progression. Internatinal Journal of Molecular Science, 23(11), 6249.

    Article  CAS  Google Scholar 

  141. Ferreira, S., Saraiva, N., Rijo, P., & Fernandes, A. S. (2021). LOXL2 inhibitors and breast cancer progression. Antioxidants (Basel), 10(2), 312.

    Article  CAS  PubMed  Google Scholar 

  142. Weidenfeld, K., Schif-Zuck, S., Abu-Tayeh, H., Kang, K., Kessler, O., Weissmann, M., Neufeld, G., & Barkan, D. (2016). Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget, 7(44), 71362–71377.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52(6), 1399–1405.

    CAS  PubMed  Google Scholar 

  144. Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P. E., Folkman, J., & Abdollahi, A. (2009). Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Research, 69(3), 836–844.

    Article  CAS  PubMed  Google Scholar 

  145. Tiram, G., Segal, E., Krivitsky, A., Shreberk-Hassidim, R., Ferber, S., Ofek, P., et al. (2016). Identification of dormancy-associated MicroRNAs for the design of osteosarcoma-targeted dendritic polyglycerol nanopolyplexes. ACS Nanotechnology, 10(2), 2028–2045.

    CAS  Google Scholar 

  146. Owen, K. L., Gearing, L. J., Zanker, D. J., Brockwell, N. K., Khoo, W. H., Roden, D. L., et al. (2020). Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 21(6), e50162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Power, C. A., Pwint, H., Chan, J., Cho, J., Yu, Y., Walsh, W., & Russell, P. J. (2009). A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate, 69(15), 1613–1623.

    Article  CAS  PubMed  Google Scholar 

  148. Wang, X., Yu, J., Yan, J., Peng, K., & Zhou, H. (2022). Single-cell sequencing reveals MYC targeting gene MAD2L1 is associated with prostate cancer bone metastasis tumor dormancy. BMC Urology, 22(1), 37.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kudaravalli, S., den Hollander, P., & Mani, S. A. (2022). Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene, 41(23), 3177–3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Qin, J. Z., Xin, H., Qi, X. M., & Chen, G. (2022). Isoform-specific and cell/tissue-dependent effects of p38 MAPKs in regulating inflammation and inflammation-associated oncogenesis. Frontiers in Bioscience (Landmark Ed.), 27(1), 31.

    CAS  Google Scholar 

  151. Ohkubo, S., Nakahata, N., & Ohizumi, Y. (1996). Thromboxane A2-mediated shape change: Independent of Gq-phospholipase C-Ca2+ pathway in rabbit platelets. British Journal of Pharmacology, 117(6), 1095–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Janowska, A., Iannone, M., Fidanzi, C., Romanelli, M., Filippi, L., Del, R. M., Martins, M., & Dini, V. (2022). The genetic basis of dormancy and awakening in cutaneous metastatic melanoma. Cancers (Basel), 14(9), 2104.

    Article  CAS  PubMed  Google Scholar 

  153. Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 14(2), 130–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Singh, D. K., Patel, V. G., Oh, W. K., & Aguirre-Ghiso, J. A. (2021). Prostate cancer dormancy and reactivation in bone marrow. Journal of Clinical Medicine, 10(12), 2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ramamoorthi, G., Kodumudi, K., Gallen, C., Zachariah, N. N., Basu, A., Albert, G., Beyer, A., Snyder, C., Wiener, D., Costa, R. L. B., & Czerniecki, B. J. (2021). Disseminated cancer cells in breast cancer: mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Seminars in Cancer Biology, 78, 78–89.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants R21-CA235092 (NCI) and W81XWH-20-BCRP-BTA12-2 (DOD) to I.H.G. and by the P30-CA016056 (NCI) Comprehensive Cancer Center grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin H. Gelman.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelman, I.H. The genomic regulation of metastatic dormancy. Cancer Metastasis Rev 42, 255–276 (2023). https://doi.org/10.1007/s10555-022-10076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10076-w

Keywords

Navigation