Skip to main content

Advertisement

Log in

Natural compounds targeting nuclear receptors for effective cancer therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly–derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249, https://doi.org/10.3322/caac.21660.

  2. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  4. Arora, L., Kumar, A. P., Arfuso, F., Chng, W. J., & Sethi, G. (2018). The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. Cancers, 10(9), 327. https://doi.org/10.3390/cancers10090327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bushweller, J. H. (2019). Targeting transcription factors in cancer - From undruggable to reality. Nature Reviews Cancer, 19(11), 611–624. https://doi.org/10.1038/s41568-019-0196-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garg, M., Shanmugam, M. K., Bhardwaj, V., Goel, A., Gupta, R., Sharma, A., et al. (2021). The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Medicinal Research Reviews, 41(3), 1291–1336. https://doi.org/10.1002/med.21761

    Article  CAS  Google Scholar 

  7. Mirzaei, S., Zarrabi, A., Hashemi, F., Zabolian, A., Saleki, H., Ranjbar, A., et al. (2021). Regulation of nuclear factor-kappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Letters, 509, 63–80. https://doi.org/10.1016/j.canlet.2021.03.025

    Article  CAS  PubMed  Google Scholar 

  8. Dhiman, V. K., Bolt, M. J., & White, K. P. (2018). Nuclear receptors in cancer—Uncovering new and evolving roles through genomic analysis. Nature Reviews Genetics, 19(3), 160–174. https://doi.org/10.1038/nrg.2017.102

    Article  CAS  PubMed  Google Scholar 

  9. Jayaprakash, S., Hegde, M., Girisa, S., Alqahtani, M. S., Abbas, M., Lee, E. H. C., et al. (2022). Demystifying the functional role of nuclear receptors in esophageal cancer. International Journal of Molecular Sciences, 23(18), 10952. https://doi.org/10.3390/ijms231810952.

  10. Gangwar, S. K., Kumar, A., Jose, S., Alqahtani, M. S., Abbas, M., Sethi, G., et al. (2022). Nuclear receptors in oral cancer-Emerging players in tumorigenesis. Cancer Letters, 536, 215666. https://doi.org/10.1016/j.canlet.2022.215666

    Article  CAS  PubMed  Google Scholar 

  11. Gangwar, S. K., Kumar, A., Yap, K. C., Jose, S., Parama, D., Sethi, G., et al. (2022). Targeting nuclear receptors in lung cancer-Novel therapeutic prospects. Pharmaceuticals (Basel), 15(5), https://doi.org/10.3390/ph15050624.

  12. Girisa, S., Rana, V., Parama, D., Dutta, U., & Kunnumakkara, A. B. (2021). Differential roles of farnesoid X receptor (FXR) in modulating apoptosis in cancer cells. Advances in Protein Chemistry and Structural Biology, 126, 63–90. https://doi.org/10.1016/bs.apcsb.2021.02.006

    Article  CAS  PubMed  Google Scholar 

  13. Girisa, S., Henamayee, S., Parama, D., Rana, V., Dutta, U., & Kunnumakkara, A. B. (2021). Targeting farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Molecular Biomedecine, 2(1), 21. https://doi.org/10.1186/s43556-021-00035-2

    Article  Google Scholar 

  14. Tang, Q., Chen, Y., Meyer, C., Geistlinger, T., Lupien, M., Wang, Q., et al. (2011). A comprehensive view of nuclear receptor cancer cistromes. Cancer Research, 71(22), 6940–6947. https://doi.org/10.1158/0008-5472.CAN-11-2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santagata, S., Thakkar, A., Ergonul, A., Wang, B., Woo, T., Hu, R., et al. (2014). Taxonomy of breast cancer based on normal cell phenotype predicts outcome. The Journal of Clinical Investigation, 124(2), 859–870. https://doi.org/10.1172/JCI70941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Font-Diaz, J., Jimenez-Panizo, A., Caelles, C., Vivanco, M. D., Perez, P., Aranda, A., et al. (2021). Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Seminars in Cancer Biology, 73, 58–75. https://doi.org/10.1016/j.semcancer.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, L., Zhou, S., & Gustafsson, J. -Å. (2019). Nuclear receptors: Recent drug discovery for cancer therapies. Endocrine Reviews, 40(5), 1207–1249.

    PubMed  Google Scholar 

  18. Burris, T. P., Solt, L. A., Wang, Y., Crumbley, C., Banerjee, S., Griffett, K., et al. (2013). Nuclear receptors and their selective pharmacologic modulators. Pharmacological Reviews, 65(2), 710–778. https://doi.org/10.1124/pr.112.006833

    Article  CAS  PubMed  Google Scholar 

  19. Ishigami-Yuasa, M., & Kagechika, H. (2020). Chemical screening of nuclear receptor modulators. International Journal of Molecular Sciences, 21(15), 5512. https://doi.org/10.3390/ijms21155512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knapp, P., Gardner, P. H., Raynor, D. K., Woolf, E., & McMillan, B. (2010). Perceived risk of tamoxifen side effects: A study of the use of absolute frequencies or frequency bands, with or without verbal descriptors. Patient Education and Counseling, 79(2), 267–271.

    Article  PubMed  Google Scholar 

  21. Pratheeshkumar, P., Sreekala, C., Zhang, Z., Budhraja, A., Ding, S., Son, Y.-O., et al. (2012). Cancer prevention with promising natural products: Mechanisms of action and molecular targets. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12(10), 1159–1184.

  22. Harsha, C., Banik, K., Bordoloi, D., & Kunnumakkara, A. B. (2017). Antiulcer properties of fruits and vegetables: A mechanism based perspective. Food and Chemical Toxicology, 108, 104–119.

    Article  CAS  PubMed  Google Scholar 

  23. Elkordy, A. A., Haj-Ahmad, R. R., Awaad, A. S., & Zaki, R. M. (2021). An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. Journal of Drug Delivery Science and Technology, 63, 102459.

    Article  CAS  Google Scholar 

  24. Kunnumakkara, A. B., Nair, A. S., Ahn, K. S., Pandey, M. K., Yi, Z., Liu, M., et al. (2007). Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kappaB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood, 109(12), 5112–5121. https://doi.org/10.1182/blood-2007-01-067256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muralimanoharan, S. B., Kunnumakkara, A. B., Shylesh, B., Kulkarni, K. H., Haiyan, X., Ming, H., et al. (2009). Butanol fraction containing berberine or related compound from nexrutine inhibits NFkappaB signaling and induces apoptosis in prostate cancer cells. Prostate, 69(5), 494–504. https://doi.org/10.1002/pros.20899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunnumakkara, A. B., Sung, B., Ravindran, J., Diagaradjane, P., Deorukhkar, A., Dey, S., et al. (2012). Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. International Journal of Cancer, 131(3), E292-303. https://doi.org/10.1002/ijc.26442

    Article  CAS  PubMed  Google Scholar 

  27. Huang, M., Lu, J.-J., & Ding, J. (2021). Natural products in cancer therapy: Past, present and future. Natural Products and Bioprospecting, 11(1), 5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, M.-Y., Zhang, L.-L., Ding, J., & Lu, J.-J. (2018). Anticancer drug discovery from Chinese medicinal herbs. Chinese Medicine, 13(1), 1–9.

    Article  Google Scholar 

  29. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, C., Ho, P.C.-L., Wong, F. C., Sethi, G., Wang, L. Z., & Goh, B. C. (2015). Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Letters, 362(1), 8–14.

    Article  CAS  PubMed  Google Scholar 

  31. Kirtonia, A., Gala, K., Fernandes, S. G., Pandya, G., Pandey, A. K., Sethi, G., et al. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. In Seminars in Cancer Biology, 2021 (Vol. 68, pp. 258–278): Elsevier

  32. Huang, P. X., Chandra, V., & Rastinejad, F. (2010). Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics. Annual Review of Physiology, 72, 247–272. https://doi.org/10.1146/annurev-physiol-021909-135917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papacleovoulou, G., Abu-Hayyeh, S., & Williamson, C. (2011). Nuclear receptor-driven alterations in bile acid and lipid metabolic pathways during gestation. Biochimica et Biophysica Acta, 1812(8), 879–887. https://doi.org/10.1016/j.bbadis.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  34. Choi, J. M., & Bothwell, A. L. M. (2012). The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Molecules and Cells, 33(3), 217–222. https://doi.org/10.1007/s10059-012-2297-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagy, Z. S., Czimmerer, Z., & Nagy, L. (2013). Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Molecular and Cellular Endocrinology, 368(1–2), 85–98. https://doi.org/10.1016/j.mce.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  36. Jin, Z., Li, X., & Wan, Y. (2015). Minireview: Nuclear receptor regulation of osteoclast and bone remodeling. Molecular Endocrinology, 29(2), 172–186. https://doi.org/10.1210/me.2014-1316

    Article  CAS  PubMed  Google Scholar 

  37. Yin, K., & Smith, A. G. (2016). Nuclear receptor function in skin health and disease: Therapeutic opportunities in the orphan and adopted receptor classes. Cellular and Molecular Life Sciences, 73(20), 3789–3800. https://doi.org/10.1007/s00018-016-2329-4

    Article  CAS  PubMed  Google Scholar 

  38. Makishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., et al. (1999). Identification of a nuclear receptor for bile acids. Science, 284(5418), 1362–1365. https://doi.org/10.1126/science.284.5418.1362

    Article  CAS  PubMed  Google Scholar 

  39. Moore, L. B., Parks, D. J., Jones, S. A., Bledsoe, R. K., Consler, T. G., Stimmel, J. B., et al. (2000). Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. Journal of Biological Chemistry, 275(20), 15122–15127. https://doi.org/10.1074/jbc.M001215200

    Article  CAS  PubMed  Google Scholar 

  40. Chawla, A., Repa, J. J., Evans, R. M., & Mangelsdorf, D. J. (2001). Nuclear receptors and lipid physiology: Opening the X-files. Science, 294(5548), 1866–1870. https://doi.org/10.1126/science.294.5548.1866

    Article  CAS  PubMed  Google Scholar 

  41. Orth, D. N., Kovacs, W., & DeBold, C. R. (1998). Williams textbook of endocrinology. In Williams Textbook of Endocrinology. WB Saunders Co.

  42. Sporn, M. B., Roberts, A. B., & Goodman, D. S. (1994). The retinoids: Biology, chemistry, and medicine (pp. 319). Lippincott Williams & Wilkins.

  43. Thummel, C. S. (1995). From embryogenesis to metamorphosis: The regulation and function of Drosophila nuclear receptor superfamily members. Cell, 83(6), 871–877. https://doi.org/10.1016/0092-8674(95)90203-1

    Article  CAS  PubMed  Google Scholar 

  44. Jones, G., Strugnell, S. A., & DeLuca, H. F. (1998). Current understanding of the molecular actions of vitamin D. Physiological Reviews, 78(4), 1193–1231. https://doi.org/10.1152/physrev.1998.78.4.1193

    Article  CAS  PubMed  Google Scholar 

  45. Forrest, D., & Vennstrom, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid, 10(1), 41–52. https://doi.org/10.1089/thy.2000.10.41

    Article  CAS  PubMed  Google Scholar 

  46. Germain, P., Staels, B., Dacquet, C., Spedding, M., & Laudet, V. (2006). Overview of nomenclature of nuclear receptors. Pharmacological Reviews, 58(4), 685–704.

    Article  CAS  PubMed  Google Scholar 

  47. Helsen, C., & Claessens, F. (2014). Looking at nuclear receptors from a new angle. Molecular and Cellular Endocrinology, 382(1), 97–106. https://doi.org/10.1016/j.mce.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  48. Weikum, E. R., Liu, X., & Ortlund, E. A. (2018). The nuclear receptor superfamily: A structural perspective. Protein Science, 27(11), 1876–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwabe, J. W., Chapman, L., Finch, J. T., & Rhodes, D. (1993). The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell, 75(3), 567–578. https://doi.org/10.1016/0092-8674(93)90390-c

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, J., Chalmers, M. J., Stayrook, K. R., Burris, L. L., Wang, Y., Busby, S. A., et al. (2011). DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nature Structural & Molecular Biology, 18(5), 556–563. https://doi.org/10.1038/nsmb.2046

    Article  CAS  Google Scholar 

  51. Yu, X., Yi, P., Hamilton, R. A., Shen, H., Chen, M., Foulds, C. E., et al. (2020). Structural insights of transcriptionally active, full-length androgen receptor coactivator complexes. Molecular Cell, 79(5), 812–823. e814.

  52. Claessens, F., & Gewirth, D. T. (2004). DNA recognition by nuclear receptors. Essays in Biochemistry, 40, 59–72. https://doi.org/10.1042/bse0400059

    Article  CAS  PubMed  Google Scholar 

  53. Cotnoir-White, D., Laperrière, D., & Mader, S. (2011). Evolution of the repertoire of nuclear receptor binding sites in genomes. Molecular and Cellular Endocrinology, 334(1–2), 76–82.

    Article  CAS  PubMed  Google Scholar 

  54. Penvose, A., Keenan, J. L., Bray, D., Ramlall, V., & Siggers, T. (2019). Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nature Communications, 10(1), 1–15.

    Article  CAS  Google Scholar 

  55. Hong, H., Kohli, K., Trivedi, A., Johnson, D. L., & Stallcup, M. R. (1996). GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proceedings of the National Academy of Sciences, 93(10), 4948–4952.

    Article  CAS  Google Scholar 

  56. Onate, S. A., Tsai, S. Y., Tsai, M. J., & O’Malley, B. W. (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science, 270(5240), 1354–1357. https://doi.org/10.1126/science.270.5240.1354

    Article  CAS  PubMed  Google Scholar 

  57. Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., et al. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell, 85(3), 403–414.

    Article  CAS  PubMed  Google Scholar 

  58. Takeshita, A., Yen, P. M., Misiti, S., Cardona, G. R., Liu, Y., & Chin, W. W. (1996). Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator. Endocrinology, 137(8), 3594–3597.

    Article  CAS  PubMed  Google Scholar 

  59. Voegel, J. J., Heine, M., Zechel, C., Chambon, P., & Gronemeyer, H. (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. The EMBO Journal, 15(14), 3667–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anzick, S. L., Kononen, J., Walker, R. L., Azorsa, D. O., Tanner, M. M., Guan, X.-Y., et al. (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 277(5328), 965–968.

    Article  CAS  PubMed  Google Scholar 

  61. Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., et al. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature, 387(6634), 677–684.

    Article  CAS  PubMed  Google Scholar 

  62. McKenna, N. J., & O’Malley, B. W. (2002). Combinatorial control of gene expression by nuclear receptors and coregulators. Cell, 108(4), 465–474.

    Article  CAS  PubMed  Google Scholar 

  63. Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., et al. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell, 90(3), 569–580.

    Article  CAS  PubMed  Google Scholar 

  64. Yoshinaga, S. K., Peterson, C. L., Herskowitz, I., & Yamamoto, K. R. (1992). Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science, 258(5088), 1598–1604.

    Article  CAS  PubMed  Google Scholar 

  65. Chakravarti, D. (1996). LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature, 383, 99–103.

    Article  CAS  PubMed  Google Scholar 

  66. Fondell, J. D., Ge, H., & Roeder, R. G. (1996). Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proceedings National Academy of Sciences of the United States of America, 93(16), 8329–8333. https://doi.org/10.1073/pnas.93.16.8329

    Article  CAS  Google Scholar 

  67. Fryer, C. J., & Archer, T. K. (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature, 393(6680), 88–91.

    Article  CAS  PubMed  Google Scholar 

  68. Rachez, C., Suldan, Z., Ward, J., Chang, C.-P.B., Burakov, D., Erdjument-Bromage, H., et al. (1998). A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes & Development, 12(12), 1787–1800.

    Article  CAS  Google Scholar 

  69. Chen, D. G., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., et al. (1999). Regulation of transcription by a protein methyltransferase. Science, 284(5423), 2174–2177. https://doi.org/10.1126/science.284.5423.2174

    Article  CAS  PubMed  Google Scholar 

  70. Lanz, R. B., McKenna, N. J., Onate, S. A., Albrecht, U., Wong, J. M., Tsai, S. Y., et al. (1999). A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell, 97(1), 17–27. https://doi.org/10.1016/S0092-8674(00)80711-4

    Article  CAS  PubMed  Google Scholar 

  71. Nawaz, Z., Lonard, D. M., Smith, C. L., Lev-Lehman, E., Tsai, S. Y., Tsai, M.-J., et al. (1999). The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Molecular and Cellular Biology, 19(2), 1182–1189. https://doi.org/10.1128/MCB.19.2.1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Näär, A. M., Lemon, B. D., & Tjian, R. (2001). Transcriptional coactivator complexes. Annual Review of Biochemistry, 70(1), 475–501.

    Article  PubMed  Google Scholar 

  73. Wang, H. B., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., et al. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 293(5531), 853–857. https://doi.org/10.1126/science.1060781

    Article  CAS  PubMed  Google Scholar 

  74. Heery, D. M., Kalkhoven, E., Hoare, S., & Parker, M. G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634), 733–736. https://doi.org/10.1038/42750

    Article  CAS  PubMed  Google Scholar 

  75. Bannister, A. J., & Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature, 384(6610), 641–643. https://doi.org/10.1038/384641a0

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., & Nakatani, Y. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature, 382(6589), 319–324. https://doi.org/10.1038/382319a0

    Article  CAS  PubMed  Google Scholar 

  77. Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J. X., Mizzen, C. A., et al. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature, 389(6647), 194–198. https://doi.org/10.1038/38304

    Article  CAS  PubMed  Google Scholar 

  78. Chen, J. D., & Evans, R. M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 377(6548), 454–457. https://doi.org/10.1038/377454a0

    Article  CAS  PubMed  Google Scholar 

  79. Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., et al. (1995). Ligand-independent repression by the thyroid-hormone receptor-mediated by a nuclear receptor co-repressor. Nature, 377(6548), 397–404. https://doi.org/10.1038/377397a0

    Article  CAS  PubMed  Google Scholar 

  80. Hu, X., & Lazar, M. A. (1999). The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature, 402(6757), 93–96. https://doi.org/10.1038/47069

    Article  CAS  PubMed  Google Scholar 

  81. Cavailles, V., Dauvois, S., Lhorset, F., Lopez, G., Hoare, S., Kushner, P. J., et al. (1995). Nuclear factor Rip140 modulates transcriptional activation by the estrogen-receptor. The EMBO Journal, 14(15), 3741–3751. https://doi.org/10.1002/j.1460-2075.1995.tb00044.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Windahl, S. H., Treuter, E., Ford, J., Zilliacus, J., Gustafsson, J. A., & McEwan, I. J. (1999). The nuclear-receptor interacting protein (RIP) 140 binds to the human glucocorticoid receptor and modulates hormone-dependent transactivation. Journal of Steroid Biochemistry and Molecular Biology, 71(3–4), 93–102. https://doi.org/10.1016/S0960-0760(99)00128-4

    Article  CAS  PubMed  Google Scholar 

  83. Sever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709. https://doi.org/10.1101/cshperspect.a016709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ong, P. S., Wang, L. Z., Dai, X., Tseng, S. H., Loo, S. J., & Sethi, G. (2016). Judicious toggling of mTOR activity to combat insulin resistance and cancer: Current evidence and perspectives. Frontiers in Pharmacology, 7, 395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dai, Y., Qiao, L., Chan, K. W., Yang, M., Ye, J. Y., Ma, J., et al. (2009). Peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of embelin on colon carcinogenesis. Cancer Research, 69(11), 4776–4783. https://doi.org/10.1158/0008-5472.Can-08-4754

    Article  CAS  PubMed  Google Scholar 

  86. Ramachandran, L., Manu, K. A., Shanmugam, M. K., Li, F., Siveen, K. S., Vali, S., et al. (2012). Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. Journal of Biological Chemistry, 287(45), 38028–38040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sikka, S., Chen, L., Sethi, G., & Kumar, A. P. (2012). Targeting PPARγ signaling cascade for the prevention and treatment of prostate cancer. PPAR Research, 2012, 968040.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang, J., Ahn, K. S., Kim, C., Shanmugam, M. K., Siveen, K. S., Arfuso, F., et al. (2016). Nimbolide-induced oxidative stress abrogates STAT3 signaling cascade and inhibits tumor growth in transgenic adenocarcinoma of mouse prostate model. Antioxidants & Redox Signaling, 24(11), 575–589.

    Article  CAS  Google Scholar 

  89. Raghunath, A., Sundarraj, K., Arfuso, F., Sethi, G., & Perumal, E. (2018). Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers, 10(12), 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duez, H., & Pourcet, B. (2021). Nuclear receptors in the control of the NLRP3 inflammasome pathway. Frontiers in Endocrinology, 12, 630536.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Alatshan, A., & Benkő, S. (2021). Nuclear receptors as multiple regulators of nlrp3 inflammasome function. Frontiers in Immunology, 12, 630569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Whyte-Allman, S.-K., Hoque, M. T., Jenabian, M.-A., Routy, J.-P., & Bendayan, R. (2017). Xenobiotic nuclear receptors pregnane X receptor and constitutive androstane receptor regulate antiretroviral drug efflux transporters at the blood-testis barrier. Journal of Pharmacology and Experimental Therapeutics, 363(3), 324–335.

    Article  CAS  PubMed  Google Scholar 

  93. Lemmen, J., Tozakidis, I. E., Bele, P., & Galla, H.-J. (2013). Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood–brain barrier after CITCO activation. Brain Research, 1501, 68–80.

    Article  CAS  PubMed  Google Scholar 

  94. Jigorel, E., Le Vee, M., Boursier-Neyret, C., Parmentier, Y., & Fardel, O. (2006). Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metabolism and Disposition, 34(10), 1756–1763.

    Article  CAS  PubMed  Google Scholar 

  95. Chisaki, I., Kobayashi, M., Itagaki, S., Hirano, T., & Iseki, K. (2009). Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(11), 2396–2403.

  96. Chen, T. (2010). Overcoming drug resistance by regulating nuclear receptors. Advanced Drug Delivery Reviews, 62(13), 1257–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Geick, A., Eichelbaum, M., & Burk, O. (2001). Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. Journal of Biological Chemistry, 276(18), 14581–14587. https://doi.org/10.1074/jbc.M010173200

    Article  CAS  PubMed  Google Scholar 

  98. Cerveny, L., Svecova, L., Anzenbacherova, E., Vrzal, R., Staud, F., Dvorak, Z., et al. (2007). Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metabolism and Disposition, 35(7), 1032–1041.

    Article  CAS  PubMed  Google Scholar 

  99. Ee, P. L. R., Kamalakaran, S., Tonetti, D., He, X., Ross, D. D., & Beck, W. T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer research, 64(4), 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  100. Szatmari, I., Vámosi, G. r., Brazda, P., Balint, B. L., Benko, S., Széles, L., et al. (2006). Peroxisome proliferator-activated receptor γ-regulated ABCG2 expression confers cytoprotection to human dendritic cells. Journal of Biological Chemistry, 281(33), 23812-23823.

  101. Burk, O., Arnold, K. A., Geick, A., Tegude, H., & Eichelbaum, M. (2005). A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biological Chemistry, 86(6), 503–513. https://doi.org/10.1515/BC.2005.060

    Article  CAS  Google Scholar 

  102. Cao, D., Qi, Z., Pang, Y., Li, H., Xie, H., Wu, J., et al. (2019). Retinoic acid-related orphan receptor c regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Research, 79(10), 2604–2618. https://doi.org/10.1158/0008-5472.CAN-18-3842

    Article  CAS  PubMed  Google Scholar 

  103. Hu, L., Sun, Y., Luo, J., He, X., Ye, M., Li, G., et al. (2020). Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Oncogene, 39(9), 1891–1903.

    Article  CAS  PubMed  Google Scholar 

  104. Kai, L., & Levenson, A. S. (2011). Combination of resveratrol and antiandrogen flutamide has synergistic effect on androgen receptor inhibition in prostate cancer cells. Anticancer Research, 31(10), 3323–3330.

    CAS  PubMed  Google Scholar 

  105. Penson, D. F., Armstrong, A. J., Concepcion, R., Agarwal, N., Olsson, C., Karsh, L., et al. (2016). Enzalutamide versus bicalutamide in castration-resistant prostate cancer: The STRIVE Trial. Journal of Clinical Oncology, 34(18), 2098–2106. https://doi.org/10.1200/JCO.2015.64.9285

    Article  CAS  PubMed  Google Scholar 

  106. de Bono, J. S., Chowdhury, S., Feyerabend, S., Elliott, T., Grande, E., Melhem-Bertrandt, A., et al. (2018). Antitumour activity and safety of enzalutamide in patients with metastatic castration-resistant prostate cancer previously treated with abiraterone acetate plus prednisone for >= 24 weeks in Europe. European Urology, 74(1), 37–45. https://doi.org/10.1016/j.eururo.2017.07.035

    Article  CAS  PubMed  Google Scholar 

  107. Lee, H. Y., Chen, H. L., Teoh, J. Y. C., Chen, T. C., Hao, S. Y., Tsai, H. Y., et al. (2021). Abiraterone and enzalutamide had different adverse effects on the cardiovascular system: A systematic review with pairwise and network meta-analyses. Prostate Cancer and Prostatic Diseases, 24(1), 244–252. https://doi.org/10.1038/s41391-020-00275-3

    Article  CAS  PubMed  Google Scholar 

  108. Johnson, D. B., & Sonthalia, S. (2022). Flutamide. In StatPearls. StatPearls Publishing.

  109. Argnani, L., Broccoli, A., & Zinzani, P. L. (2017). Cutaneous T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease. Cancer Treatment Reviews, 61, 61–69. https://doi.org/10.1016/j.ctrv.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  110. Binkhorst, L., Mathijssen, R. H. J., Jager, A., & van Gelder, T. (2015). Individualization of tamoxifen therapy: Much more than just CYP2D6 genotyping. Cancer Treatment Reviews, 41(3), 289–299. https://doi.org/10.1016/j.ctrv.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  111. Culig, Z. (2014). Targeting the androgen receptor in prostate cancer. Expert Opinion on Pharmacotherapy, 15(10), 1427–1437.

    Article  CAS  PubMed  Google Scholar 

  112. de The, H., Pandolfi, P. P., & Chen, Z. (2017). Acute promyelocytic leukemia: A paradigm for oncoprotein-targeted cure. Cancer Cell, 32(5), 552–560. https://doi.org/10.1016/j.ccell.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  113. Facciola, A., Venanzi Rullo, E., Ceccarelli, M., D'Aleo, F., Di Rosa, M., Pinzone, M. R., et al. (2017). Kaposi’s sarcoma in HIV-infected patients in the era of new antiretrovirals.European Review for Medical Pharmacological Sciences, 21(24), 5868–5869, https://doi.org/10.26355/eurrev_201712_14036.

  114. Gniadecki, R., Assaf, C., Bagot, M., Dummer, R., Duvic, M., Knobler, R., et al. (2007). The optimal use of bexarotene in cutaneous T-cell lymphoma. British Journal of Dermatology, 157(3), 433–440. https://doi.org/10.1111/j.1365-2133.2007.07975.x

    Article  CAS  PubMed  Google Scholar 

  115. Jordan, V. C. (2014). Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocrine-Related Cancer, 21(3), R235–R246. https://doi.org/10.1530/Erc-14-0092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McKeage, K., Curran, M. P., & Plosker, G. L. (2004). Fulvestrant. Drugs, 64(6), 633–648.

    Article  CAS  PubMed  Google Scholar 

  117. Nathan, M. R., & Schmid, P. (2017). A review of fulvestrant in breast cancer. Oncology and Therapy, 5(1), 17–29.

    Article  PubMed  Google Scholar 

  118. Pileri, A., Delfino, C., Grandi, V., & Pimpinelli, N. (2013). Role of bexarotene in the treatment of cutaneous T-cell lymphoma: The clinical and immunological sides. Immunotherapy, 5(4), 427–433. https://doi.org/10.2217/Imt.13.15

    Article  CAS  PubMed  Google Scholar 

  119. Rathkopf, D. E., Beer, T. M., Loriot, Y., Higano, C. S., Armstrong, A. J., Sternberg, C. N., et al. (2018). Radiographic progression-free survival as a clinically meaningful end point in metastatic castration-resistant prostate cancer: The PREVAIL Randomized Clinical Trial. Jama Oncology, 4(5), 694–701. https://doi.org/10.1001/jamaoncol.2017.5808

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rathkopf, D. E., Smith, M., Ryan, C., Berry, W., Shore, N., Liu, G., et al. (2017). Androgen receptor mutations in patients with castration-resistant prostate cancer treated with apalutamide. Annals of Oncology, 28(9), 2264–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Scott, S. M., Brown, M., & Come, S. E. (2011). Emerging data on the efficacy and safety of fulvestrant, a unique antiestrogen therapy for advanced breast cancer. Expert Opinion on Drug Safety, 10(5), 819–826. https://doi.org/10.1517/14740338.2011.595560

    Article  CAS  PubMed  Google Scholar 

  122. Smith, M. R., Antonarakis, E. S., Ryan, C. J., Berry, W. R., Shore, N. D., Liu, G., et al. (2016). Phase 2 study of the safety and antitumor activity of apalutamide (ARN-509), a potent androgen receptor antagonist, in the high-risk nonmetastatic castration-resistant prostate cancer cohort. European Urology, 70(6), 963–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Smith, M. R., Saad, F., Chowdhury, S., Oudard, S., Hadaschik, B. A., Graff, J. N., et al. (2018). Apalutamide treatment and metastasis-free survival in prostate cancer. New England Journal of Medicine, 378(15), 1408–1418.

    Article  CAS  PubMed  Google Scholar 

  124. Vogel, C. L., Johnston, M. A., Capers, C., & Braccia, D. (2014). Toremifene for breast cancer: A review of 20 years of data. Clinical Breast Cancer, 14(1), 1–9. https://doi.org/10.1016/j.clbc.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  125. Wiseman, L. R., & Goa, K. L. (1997). Toremifene. Drugs, 54(1), 141–160.

    Article  CAS  PubMed  Google Scholar 

  126. Warrell, R. P., Jr., Frankel, S. R., Miller, W. H., Jr., Scheinberg, D. A., Itri, L. M., Hittelman, W. N., et al. (1991). Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England Journal of Medicine, 324(20), 1385–1393. https://doi.org/10.1056/NEJM199105163242002

    Article  PubMed  Google Scholar 

  127. Wong, Y. N. S., Ferraldeschi, R., Attard, G., & de Bono, J. (2014). Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nature Reviews Clinical Oncology, 11(6), 365–376. https://doi.org/10.1038/nrclinonc.2014.72

    Article  CAS  PubMed  Google Scholar 

  128. Wu, P. A., & Stern, R. S. (2012). Topical tretinoin, another failure in the pursuit of practical chemoprevention for non-melanoma skin cancer. Journal of Investigative Dermatology, 132(6), 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  129. Quinn, B. J., Dallos, M., Kitagawa, H., Kunnumakkara, A. B., Memmott, R. M., Hollander, M. C., et al. (2013). Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prevention Research (Philadelphia, Pa.), 6(8), 801–810. https://doi.org/10.1158/1940-6207.CAPR-13-0058-T

    Article  CAS  PubMed  Google Scholar 

  130. Parama, D., Boruah, M., Yachna, K., Rana, V., Banik, K., Harsha, C., et al. (2020). Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sciences, 260, 118182. https://doi.org/10.1016/j.lfs.2020.118182

    Article  CAS  PubMed  Google Scholar 

  131. Kunnumakkara, A. B., Banik, K., Bordoloi, D., Harsha, C., Sailo, B. L., Padmavathi, G., et al. (2018). Googling the guggul (Commiphora and Boswellia) for prevention of chronic diseases. Frontiers in Pharmacology, 9, 686. https://doi.org/10.3389/fphar.2018.00686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Babu, B. H., Jayram, H. N., Nair, M. G., Ajaikumar, K. B., & Padikkala, J. (2003). Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. Journal of Experimental & Clinical Cancer Research, 22(4), 581–589.

    CAS  Google Scholar 

  133. Padmavathi, G., Rathnakaram, S. R., Monisha, J., Bordoloi, D., Roy, N. K., & Kunnumakkara, A. B. (2015). Potential of butein, a tetrahydroxychalcone to obliterate cancer. Phytomedicine, 22(13), 1163–1171. https://doi.org/10.1016/j.phymed.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  134. Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., et al. (2020). Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules, 25(10), 2278. https://doi.org/10.3390/molecules25102278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Heymach, J. V., Shackleford, T. J., Tran, H. T., Yoo, S. Y., Do, K. A., Wergin, M., et al. (2011). Effect of low-fat diets on plasma levels of NF-kappaB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer. Cancer Prevention Research (Philadelphia, Pa.), 4(10), 1590–1598. https://doi.org/10.1158/1940-6207.CAPR-10-0136

    Article  CAS  PubMed  Google Scholar 

  136. Khatoon, E., Banik, K., Harsha, C., Sailo, B. L., Thakur, K. K., Khwairakpam, A. D., et al. (2022). Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology, 80, 306–339. https://doi.org/10.1016/j.semcancer.2020.06.014

    Article  CAS  PubMed  Google Scholar 

  137. Kunnumakkara, A. B., Koca, C., Dey, S., Gehlot, P., Yodkeeree, S., Danda, D., et al. (2009). Traditional uses of spices: An overview. Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine, 1–24. https://doi.org/10.1142/9789812837912_0001

  138. Kunnumakkara, A. B., Bordoloi, D., Sailo, B. L., Roy, N. K., Thakur, K. K., Banik, K., et al. (2019). Cancer drug development: The missing links. Experimental Biology and Medicine (Maywood, N.J.), 244(8), 663–689. https://doi.org/10.1177/1535370219839163

    Article  CAS  PubMed  Google Scholar 

  139. Delfosse, V., Maire, A. I., Balaguer, P., & Bourguet, W. (2015). A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacologica Sinica, 36(1), 88–101.

    Article  PubMed  Google Scholar 

  140. Manu, K. A., Shanmugam, M. K., Li, F., Chen, L., Siveen, K. S., Ahn, K. S., et al. (2014). Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. Journal of Molecular Medicine, 92(3), 267–276.

    Article  CAS  PubMed  Google Scholar 

  141. Hsieh, Y.-S., Yang, S.-F., Sethi, G., & Hu, D.-N. (2015). Natural bioactives in cancer treatment and prevention. BioMed Research International, 2015, 182835. https://doi.org/10.1155/2015/182835

    Article  PubMed  PubMed Central  Google Scholar 

  142. Patel, S. M., Venkata, K. C. N., Bhattacharyya, P., Sethi, G., & Bishayee, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. In Seminars in Cancer Biology, 2016 (Vol. 40, pp. 100–115): Elsevier

  143. Kim, C., Lee, S.-G., Yang, W. M., Arfuso, F., Um, J.-Y., Kumar, A. P., et al. (2018). Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Letters, 431, 123–141.

    Article  CAS  PubMed  Google Scholar 

  144. Benyhe, S. (1994). Morphine: New aspects in the study of an ancient compound. Life Sciences, 55(13), 969–979. https://doi.org/10.1016/0024-3205(94)00631-8

    Article  CAS  PubMed  Google Scholar 

  145. Mondal, A., Gandhi, A., Fimognari, C., Atanasov, A. G., & Bishayee, A. (2019). Alkaloids for cancer prevention and therapy: Current progress and future perspectives. European Journal of Pharmacology, 858, 172472. https://doi.org/10.1016/j.ejphar.2019.172472

    Article  CAS  PubMed  Google Scholar 

  146. Huang, M., Gao, H., Chen, Y., Zhu, H., Cai, Y., Zhang, X., et al. (2007). Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clinical Cancer Research, 13(4), 1298–1307. https://doi.org/10.1158/1078-0432.CCR-06-1277

    Article  CAS  PubMed  Google Scholar 

  147. Li, W., Shao, Y., Hu, L., Zhang, X., Chen, Y., Tong, L., et al. (2007). BM6, a new semi-synthetic vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles. Cancer Biology & Therapy, 6(5), 787–794. https://doi.org/10.4161/cbt.6.5.4006

    Article  CAS  Google Scholar 

  148. Habtemariam, S. (2016). Berberine and inflammatory bowel disease: A concise review. Pharmacological Research, 113(Pt A), 592–599. https://doi.org/10.1016/j.phrs.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  149. Ruan, H., Zhan, Y. Y., Hou, J., Xu, B., Chen, B., Tian, Y., et al. (2017). Berberine binds RXRalpha to suppress beta-catenin signaling in colon cancer cells. Oncogene, 36(50), 6906–6918. https://doi.org/10.1038/onc.2017.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cancer, I. A. f. R. o. (1991). Coffee, tea, mate, methylxanthines, and methyglyoxal. IARC Monograph on the Evaluation of Carcinogenic Risk of Chemicals to Humans, 51, 1–513.

    Google Scholar 

  151. Tolmach, L. J., Jones, R. W., & Busse, P. M. (1977). The action of caffeine on X-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis. Radiation Research, 71(3), 653–665.

  152. Busse, P. M., Bose, S. K., Jones, R. W., & Tolmach, L. J. (1978). The action of caffeine on X-irradiated HeLa cells. III. Enhancement of X-ray-induced killing during G2 arrest. Radiation Research, 76(2), 292–307.

  153. Lau, C. C., & Pardee, A. B. (1982). Mechanism by which caffeine potentiates lethality of nitrogen-mustard. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 79(9), 2942–2946. https://doi.org/10.1073/pnas.79.9.2942

    Article  CAS  Google Scholar 

  154. Levi-Schaffer, F., & Touitou, E. (1991). Xanthines inhibit 3T3 fibroblast proliferation. Skin Pharmacology, 4(4), 286–290. https://doi.org/10.1159/000210963

    Article  CAS  PubMed  Google Scholar 

  155. Lou, Y. R., Lu, Y. P., Xie, J. G., Huang, M. T., & Conney, A. H. (1999). Effects of oral administration of tea, decaffeinated tea, and caffeine on the formation and growth of tumors in high-risk SKH-1 mice previously treated with ultraviolet B light. Nutrition and Cancer, 33(2), 146–153. https://doi.org/10.1207/S15327914NC330205

    Article  CAS  PubMed  Google Scholar 

  156. Nomura, M., Ichimatsu, D., Moritani, S., Koyama, I., Dong, Z., Yokogawa, K., et al. (2005). Inhibition of epidermal growth factor-induced cell transformation and Akt activation by caffeine. Molecular Carcinogenesis, 44(1), 67–76. https://doi.org/10.1002/mc.20120

    Article  CAS  PubMed  Google Scholar 

  157. Faudone, G., Kilu, W., Ni, X., Chaikuad, A., Sreeramulu, S., Heitel, P., et al. (2021). The transcriptional repressor orphan nuclear receptor TLX is responsive to xanthines. ACS Pharmacology & Translational Science, 4(6), 1794–1807.

    Article  CAS  Google Scholar 

  158. Clark, R., & Lee, S. H. (2016). Anticancer properties of capsaicin against human cancer. Anticancer Research, 36(3), 837–843.

    CAS  PubMed  Google Scholar 

  159. Kim, C. S., Park, W. H., Park, J. Y., Kang, J. H., Kim, M. O., Kawada, T., et al. (2004). Capsaicin, a spicy component of hot pepper, induces apoptosis by activation of the peroxisome proliferator-activated receptor gamma in HT-29 human colon cancer cells. Journal of Medicinal Food, 7(3), 267–273. https://doi.org/10.1089/1096620041938713

    Article  CAS  PubMed  Google Scholar 

  160. Bort, A., Sanchez, B. G., Mateos-Gomez, P. A., Diaz-Laviada, I., & Rodriguez-Henche, N. (2019). Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation. International Journal of Molecular Sciences, 20(7), ARTN 1660. https://doi.org/10.3390/ijms20071660.

  161. Kumar, S., Kamboj, J., & Sharma, S. (2011). Overview for various aspects of the health benefits of Piper longum linn. fruit. Journal of Acupuncture and Meridian Studies, 4(2), 134–140.

  162. Zadorozhna, M., Tataranni, T., & Mangieri, D. (2019). Piperine: Role in prevention and progression of cancer. Molecular Biology Reports, 46(5), 5617–5629. https://doi.org/10.1007/s11033-019-04927-z

    Article  CAS  PubMed  Google Scholar 

  163. Rajarajan, D., Natesh, J., Penta, D., & Meeran, S. M. (2021). Dietary piperine suppresses obesity-associated breast cancer growth and metastasis by regulating the miR-181c-3p/PPARalpha axis. Journal of Agriculture and Food Chemistry, 69(51), 15562–15574. https://doi.org/10.1021/acs.jafc.1c05670

    Article  CAS  Google Scholar 

  164. Vershinin, A. (1999). Biological functions of carotenoids - Diversity and evolution. BioFactors, 10(2–3), 99–104.

    Article  CAS  PubMed  Google Scholar 

  165. Sandmann, G. (2021). Diversity and evolution of carotenoid biosynthesis from prokaryotes to plants. Carotenoids: Biosynthetic and Biofunctional Approaches, 1261, 79–94. https://doi.org/10.1007/978-981-15-7360-6_7

  166. Zare, M., Norouzi Roshan, Z., Assadpour, E., & Jafari, S. M. (2021). Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition, 61(3), 522–534.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, X., Zhao, W.-E., Hu, L., Zhao, L., & Huang, J. (2011). Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Archives of Biochemistry and Biophysics, 512(1), 96–106.

    Article  CAS  PubMed  Google Scholar 

  168. Liu, C.-L., Lim, Y.-P., & Hu, M.-L. (2012). Fucoxanthin attenuates rifampin-induced cytochrome P450 3A4 (CYP3A4) and multiple drug resistance 1 (MDR1) gene expression through pregnane X receptor (PXR)-mediated pathways in human hepatoma HepG2 and colon adenocarcinoma LS174T cells. Marine Drugs, 10(1), 242–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hosokawa, M., Kudo, M., Maeda, H., Kohno, H., Tanaka, T., & Miyashita, K. (2004). Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1675(1–3), 113–119.

  170. Lian, F., Hu, K. Q., Russell, R. M., & Wang, X. D. (2006). β-Cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor β expression. International Journal of Cancer, 119(9), 2084–2089.

    Article  CAS  PubMed  Google Scholar 

  171. Iskandar, A. R., Liu, C., Smith, D. E., Hu, K.-Q., Choi, S.-W., Ausman, L. M., et al. (2013). β-Cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prevention Research, 6(4), 309–320.

    Article  CAS  PubMed  Google Scholar 

  172. Cheng, J., Miao, B., Hu, K.-Q., Fu, X., & Wang, X.-D. (2018). Apo-10’-lycopenoic acid inhibits cancer cell migration and angiogenesis and induces peroxisome proliferator-activated receptor γ. The Journal of Nutritional Biochemistry, 56, 26–34.

    Article  CAS  PubMed  Google Scholar 

  173. Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American journal of Clinical Nutrition, 79(5), 727–747.

    Article  CAS  PubMed  Google Scholar 

  174. Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., et al. (2010). Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database (Oxford), 2010, bap024. https://doi.org/10.1093/database/bap024

    Article  CAS  PubMed  Google Scholar 

  175. Zhou, Y., Zheng, J., Li, Y., Xu, D.-P., Li, S., Chen, Y.-M., et al. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8), 515.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kausar, H., Jeyabalan, J., Aqil, F., Chabba, D., Sidana, J., Singh, I. P., et al. (2012). Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Letters, 325(1), 54–62. https://doi.org/10.1016/j.canlet.2012.05.029

    Article  CAS  PubMed  Google Scholar 

  177. Wang, H., Zhang, H., Tang, L., Chen, H., Wu, C., Zhao, M., et al. (2013). Resveratrol inhibits TGF-beta1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology, 303, 139–146. https://doi.org/10.1016/j.tox.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  178. Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020–6047. https://doi.org/10.3390/nu6126020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shi, W. F., Leong, M., Cho, E., Farrell, J., Chen, H. C., Tian, J., et al. (2009). Repressive effects of resveratrol on androgen receptor transcriptional activity. Plos One, 4(10), ARTN e7398. https://doi.org/10.1371/journal.pone.0007398.

  180. Rigalli, J. P., Tocchetti, G. N., Arana, M. R., Villanueva, S. S., Catania, V. A., Theile, D., et al. (2016). The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Letters, 376(1), 165–172. https://doi.org/10.1016/j.canlet.2016.03.040

    Article  CAS  PubMed  Google Scholar 

  181. Kretschmer, N., Rinner, B., Deutsch, A. J. A., Lohberger, B., Knausz, H., Kunert, O., et al. (2012). Naphthoquinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma cells. Journal of Natural Products, 75(5), 865–869. https://doi.org/10.1021/np2006499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Park, S. H., Phuc, N. M., Lee, J., Wu, Z., Kim, J., Kim, H., et al. (2017). Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells. Phytomedicine, 24, 134–140. https://doi.org/10.1016/j.phymed.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  183. Liu, J., Zhou, W., Li, S. S., Sun, Z., Lin, B. Z., Lang, Y. Y., et al. (2008). Modulation of orphan nuclear receptor Nur77-mediated apoptotic pathway by acetylshikonin and analogues. Cancer Research, 68(21), 8871–8880. https://doi.org/10.1158/0008-5472.Can-08-1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Moon, J., Koh, S. S., Malilas, W., Cho, I. R., Kaewpiboon, C., Kaowinn, S., et al. (2014). Acetylshikonin induces apoptosis of hepatitis B virus X protein-expressing human hepatocellular carcinoma cells via endoplasmic reticulum stress. European Journal of Pharmacology, 735, 132–140. https://doi.org/10.1016/j.ejphar.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  185. Lai, H. C., Singh, N. P., & Sasaki, T. (2013). Development of artemisinin compounds for cancer treatment. Investigational New Drugs, 31(1), 230–246. https://doi.org/10.1007/s10637-012-9873-z

    Article  CAS  PubMed  Google Scholar 

  186. Steely, A. M., Willoughby, J. A., Sr., Sundar, S. N., Aivaliotis, V. I., & Firestone, G. L. (2017). Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein. Anti-Cancer Drugs, 28(9), 1018–1031. https://doi.org/10.1097/CAD.0000000000000547

    Article  CAS  PubMed  Google Scholar 

  187. Morrissey, C., Gallis, B., Solazzi, J. W., Kim, B. J., Gulati, R., Vakar-Lopez, F., et al. (2010). Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells. Anti-Cancer Drugs, 21(4), 423–432. https://doi.org/10.1097/CAD.0b013e328336f57b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, Z. Z., Wang, C., Wu, Z. Y., Xue, J., Shen, B. X., Zuo, W., et al. (2017). Artesunate suppresses the growth of prostatic cancer cells through inhibiting androgen receptor. Biological & Pharmaceutical Bulletin, 40(4), 479–485. https://doi.org/10.1248/bpb.b16-00908

    Article  CAS  Google Scholar 

  189. Lu, Z.-H., Peng, J.-H., Zhang, R.-X., Wang, F., Sun, H.-P., Fang, Y.-J., et al. (2018). Dihydroartemisinin inhibits colon cancer cell viability by inducing apoptosis through up-regulation of PPARγ expression. Saudi Journal of Biological Sciences, 25(2), 372–376.

    Article  CAS  PubMed  Google Scholar 

  190. Tayarani-Najaran, Z., Tayarani-Najaran, N., & Eghbali, S. (2021). A review of auraptene as an anticancer agent. Frontiers in Pharmacology, 12, 698352. https://doi.org/10.3389/fphar.2021.698352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kawabata, K., Murakami, A., & Ohigashi, H. (2006). Auraptene decreases the activity of matrix metalloproteinases in dextran sulfate sodium-induced ulcerative colitis in ICR mice. Bioscience Biotechnology and Biochemistry, 70(12), 3062–3065. https://doi.org/10.1271/bbb.60393

    Article  CAS  PubMed  Google Scholar 

  192. Takahashi, N., Kang, M.-S., Kuroyanagi, K., Goto, T., Hirai, S., Ohyama, K., et al. (2008). Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. BioFactors, 33(1), 25–32.

    Article  CAS  PubMed  Google Scholar 

  193. Jamialahmadi, K., Salari, S., Alamolhodaei, N. S., Avan, A., Gholami, L., & Karimi, G. (2018). Auraptene inhibits migration and invasion of cervical and ovarian cancer cells by repression of matrix metalloproteinasas 2 and 9 activity. Journal of Pharmacopuncture, 21(3), 177–184. https://doi.org/10.3831/KPI.2018.21.021

    Article  PubMed  PubMed Central  Google Scholar 

  194. Charmforoshan, E., Karimi, E., Oskoueian, E., Es-Haghi, A., & Iranshahi, M. (2019). Inhibition of human breast cancer cells (MCF-7 cell line) growth via cell proliferation, migration, and angiogenesis by auraptene of Ferula szowitsiana root extract. Journal of Food Measurement and Characterization, 13(4), 2644–2653. https://doi.org/10.1007/s11694-019-00185-6

    Article  Google Scholar 

  195. Guo, Z. X., Hu, X. L., Xing, Z. Q., Xing, R., Lv, R. G., Cheng, X. Y., et al. (2015). Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Molecular and Cellular Biochemistry, 406(1–2), 111–119. https://doi.org/10.1007/s11010-015-2429-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liu, H., Dong, Y. H., Gao, Y. T., Du, Z. P., Wang, Y. T., Cheng, P., et al. (2016). The fascinating effects of baicalein on cancer: A review. International Journal of Molecular Sciences, 17(10), ARTN 1681. https://doi.org/10.3390/ijms17101681.

  197. Otsuyama, K. I., Ma, Z., Abroun, S., Amin, J., Shamsasenjan, K., Asaoku, H., et al. (2007). PPARbeta-mediated growth suppression of baicalein and dexamethasone in human myeloma cells. Leukemia, 21(1), 187–190. https://doi.org/10.1038/sj.leu.2404462

    Article  CAS  PubMed  Google Scholar 

  198. Carazo Fernandez, A., Smutny, T., Hyrsova, L., Berka, K., & Pavek, P. (2015). Chrysin, baicalein and galangin are indirect activators of the human constitutive androstane receptor (CAR). Toxicology Letters, 233(2), 68–77. https://doi.org/10.1016/j.toxlet.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  199. Bonham, M., Posakony, J., Coleman, I., Montgomery, B., Simon, J., & Nelson, P. S. (2005). Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clinical Cancer Research, 11(10), 3905–3914. https://doi.org/10.1158/1078-0432.CCR-04-1974

    Article  CAS  PubMed  Google Scholar 

  200. Tsai, N. M., Chen, Y. L., Lee, C. C., Lin, P. C., Cheng, Y. L., Chang, W. L., et al. (2006). The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. Journal of Neurochemistry, 99(4), 1251–1262. https://doi.org/10.1111/j.1471-4159.2006.04151.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tsai, N. M., Lin, S. Z., Lee, C. C., Chen, S. P., Su, H. C., Chang, W. L., et al. (2005). The antitumor effects of Angelica sinensis on malignant brain tumors in vitro and in vivo. Clinical Cancer Research, 11(9), 3475–3484. https://doi.org/10.1158/1078-0432.CCR-04-1827

    Article  PubMed  Google Scholar 

  202. Wei, C. W., Lin, C. C., Yu, Y. L., Lin, C. Y., Lin, P. C., Wu, M. T., et al. (2009). n-Butylidenephthalide induced apoptosis in the A549 human lung adenocarcinoma cell line by coupled down-regulation of AP-2alpha and telomerase activity. Acta Pharmacologica Sinica, 30(9), 1297–1306. https://doi.org/10.1038/aps.2009.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Su, Y. J., Huang, S. Y., Ni, Y. H., Liao, K. F., & Chiu, S. C. (2018). Anti-tumor and radiosensitization effects of N-butylidenephthalide on human breast cancer cells. Molecules, 23(2), 240. https://doi.org/10.3390/molecules23020240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chen, Y. L., Jian, M. H., Lin, C. C., Kang, J. C., Chen, S. P., Lin, P. C., et al. (2008). The induction of orphan nuclear receptor nur77 expression by n-butylenephthalide as pharmaceuticals on hepatocellular carcinoma cell therapy. Molecular Pharmacology, 74(4), 1046–1058. https://doi.org/10.1124/mol.107.044800

    Article  CAS  PubMed  Google Scholar 

  205. Lin, P. C., Chen, Y. L., Chiu, S. C., Yu, Y. L., Chen, S. P., Chien, M. H., et al. (2008). Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. Journal of Neurochemistry, 106(3), 1017–1026. https://doi.org/10.1111/j.1471-4159.2008.05432.x

    Article  CAS  PubMed  Google Scholar 

  206. Kannaiyan, R., Shanmugam, M. K., & Sethi, G. (2011). Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer. Cancer Letters, 303(1), 9–20. https://doi.org/10.1016/j.canlet.2010.10.025

    Article  CAS  PubMed  Google Scholar 

  207. Sanna, V., Chamcheu, J. C., Pala, N., Mukhtar, H., Sechi, M., & Siddiqui, I. A. (2015). Nanoencapsulation of natural triterpenoid celastrol for prostate cancer treatment. International Journal of Nanomedicine, 10, 6835–6846. https://doi.org/10.2147/IJN.S93752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lim, H. Y., Ong, P. S., Wang, L., Goel, A., Ding, L., Wong, A.L.-A., et al. (2021). Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Letters, 521, 252–267.

    Article  CAS  PubMed  Google Scholar 

  209. Rajendran, P., Li, F., Shanmugam, M. K., Kannaiyan, R., Goh, J. N., Wong, K. F., et al. (2012). Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prevention Research, 5(4), 631–643. https://doi.org/10.1158/1940-6207.Capr-11-0420

    Article  CAS  PubMed  Google Scholar 

  210. Li, X. J., Wang, H. M., Ding, J., Nie, S. Z., Wang, L., Zhang, L. L., et al. (2019). Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells. European Journal of Pharmacology, 842, 146–156. https://doi.org/10.1016/j.ejphar.2018.10.043

    Article  CAS  PubMed  Google Scholar 

  211. Yang, H. J., Chen, D., Cui, Q. Z. C., Yuan, X., & Dou, Q. P. (2006). Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine”, is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Research, 66(9), 4758–4765. https://doi.org/10.1158/0008-5472.Can-05-4529

    Article  CAS  PubMed  Google Scholar 

  212. Hu, M. J., Luo, Q., Alitongbieke, G., Chong, S. Y., Xu, C. T., Xie, L., et al. (2017). Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Molecular Cell, 66(1), 141-+, https://doi.org/10.1016/j.molcel.2017.03.008.

  213. Chan, K., Chui, S., Wong, D., Ha, W., Chan, C., & Wong, R. (2004). Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sciences, 75(26), 3157–3171.

    Article  CAS  PubMed  Google Scholar 

  214. Chen, W., Lu, Y., Chen, G., & Huang, S. (2013). Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anti-Cancer Agents in Medicinal Chemistry, 13(7), 979–987. https://doi.org/10.2174/18715206113139990115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wu, C. Y., Hsieh, C. Y., Huang, K. E., Chang, C., & Kang, H. Y. (2012). Cryptotanshinone down-regulates androgen receptor signaling by modulating lysine-specific demethylase 1 function. International Journal of Cancer, 131(6), 1423–1434. https://doi.org/10.1002/ijc.27343

    Article  CAS  PubMed  Google Scholar 

  216. Xu, D., Lin, T. H., Li, S., Da, J., Wen, X. Q., Ding, J., et al. (2012). Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Letters, 316(1), 11–22. https://doi.org/10.1016/j.canlet.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  217. Moballegh Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khanbabaei, H., et al. (2020). Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules, 25(3), 689.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Abadi, A. J., Mirzaei, S., Mahabady, M. K., Hashemi, F., Zabolian, A., Hashemi, F., et al. (2022). Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytotherapy Research, 36(1), 189–213.

    Article  CAS  PubMed  Google Scholar 

  219. Gupta, S. C., Sung, B., Kim, J. H., Prasad, S., Li, S., & Aggarwal, B. B. (2013). Multitargeting by turmeric, the golden spice: From kitchen to clinic. Molecular Nutrition & Food Research, 57(9), 1510–1528. https://doi.org/10.1002/mnfr.201100741

    Article  CAS  Google Scholar 

  220. Bordoloi, D., Roy, N. K., Monisha, J., Padmavathi, G., & Kunnumakkara, A. B. (2016). Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Patents on Anti-Cancer Drug Discovery, 11(1), 67–97. https://doi.org/10.2174/1574892810666151020101706

    Article  CAS  PubMed  Google Scholar 

  221. Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bhatia, M., Bhalerao, M., Cruz-Martins, N., & Kumar, D. (2021). Curcumin and cancer biology: Focusing regulatory effects in different signalling pathways. Phytotherapy Research, 35(9), 4913–4929. https://doi.org/10.1002/ptr.7121

    Article  CAS  PubMed  Google Scholar 

  223. Prakobwong, S., Gupta, S. C., Kim, J. H., Sung, B., Pinlaor, P., Hiraku, Y., et al. (2011). Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis, 32(9), 1372–1380. https://doi.org/10.1093/carcin/bgr032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Peschel, D., Koerting, R., & Nass, N. (2007). Curcumin induces changes in expression of genes involved in cholesterol homeostasis. Journal of Nutritional Biochemistry, 18(2), 113–119. https://doi.org/10.1016/j.jnutbio.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  225. Yang, F., Tang, X. W., Ding, L. L., Zhou, Y., Yang, Q. L., Gong, J. T., et al. (2016). Curcumin protects ANIT-induced cholestasis through signaling pathway of FXR-regulated bile acid and inflammation. Scientific Reports, 6, 33052. https://doi.org/10.1038/srep33052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jiang, A., Wang, X., Shan, X., Li, Y., Wang, P., Jiang, P., et al. (2015). Curcumin reactivates silenced tumor suppressor gene RARβ by reducing DNA methylation. Phytotherapy Research, 29(8), 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  227. Lee, Y. K., Lee, W. S., Hwang, J. T., Kwon, D. Y., Surh, Y. J., & Park, O. J. (2009). Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells. Journal of Agricultural and Food Chemistry, 57(1), 305–310.

    Article  CAS  PubMed  Google Scholar 

  228. Batie, S., Lee, J. H., Jama, R. A., Browder, D. O., Montano, L. A., Huynh, C. C., et al. (2013). Synthesis and biological evaluation of halogenated curcumin analogs as potential nuclear receptor selective agonists. Bioorganic & Medicinal Chemistry, 21(3), 693–702. https://doi.org/10.1016/j.bmc.2012.11.033

    Article  CAS  Google Scholar 

  229. Bartik, L., Whitfield, G. K., Kaczmarska, M., Lowmiller, C. L., Moffet, E. W., Furmick, J. K., et al. (2010). Curcumin: A novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. Journal of Nutritional Biochemistry, 21(12), 1153–1161. https://doi.org/10.1016/j.jnutbio.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  230. Chen, A. P., & Xu, J. Y. (2005). Activation of PPAR gamma by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288(3), G447-G456, https://doi.org/10.1152/ajpgi.00209.2004.

  231. Thulasiraman, P., Garriga, G., Danthuluri, V., McAndrews, D. J., & Mohiuddin, I. Q. (2017). Activation of the CRABPII/RAR pathway by curcumin induces retinoic acid mediated apoptosis in retinoic acid resistant breast cancer cells. Oncology Reports, 37(4), 2007–2015. https://doi.org/10.3892/or.2017.5495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Thulasiraman, P., McAndrews, D. J., & Mohiudddin, I. Q. (2014). Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells. Bmc Cancer, 14, 724. https://doi.org/10.1186/1471-2407-14-724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Altenburg, J. D., Bieberich, A. A., Terry, C., Harvey, K. A., VanHorn, J. F., Xu, Z., et al. (2011). A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: Unique signaling not explained by the effects of either compound alone. BMC Cancer, 11(1), 1–16.

    Article  Google Scholar 

  234. Mullen, W., Yokota, T., Lean, M. E., & Crozier, A. (2003). Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC-MSn. Phytochemistry, 64(2), 617–624. https://doi.org/10.1016/s0031-9422(03)00281-4

    Article  CAS  PubMed  Google Scholar 

  235. Berni, A., Grossi, M. R., Pepe, G., Filippi, S., Muthukumar, S., Papeschi, C., et al. (2012). Protective effect of ellagic acid (EA) on micronucleus formation induced by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in mammalian cells, in in vitro assays and in vivo. Mutation Research, 746(1), 60–65. https://doi.org/10.1016/j.mrgentox.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  236. Kumar, K. N., Raja, S. B., Vidhya, N., & Devaraj, S. N. (2012). Ellagic acid modulates antioxidant status, ornithine decarboxylase expression, and aberrant crypt foci progression in 1,2-dimethylhydrazine-instigated colon preneoplastic lesions in rats. Journal of Agriculture and Food Chemistry, 60(14), 3665–3672. https://doi.org/10.1021/jf204128z

    Article  CAS  Google Scholar 

  237. Khanduja, K. L., Gandhi, R. K., Pathania, V., & Syal, N. (1999). Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food and Chemical Toxicology, 37(4), 313–318. https://doi.org/10.1016/s0278-6915(99)00021-6

    Article  CAS  PubMed  Google Scholar 

  238. Anitha, P., Priyadarsini, R. V., Kavitha, K., Thiyagarajan, P., & Nagini, S. (2013). Ellagic acid coordinately attenuates Wnt/beta-catenin and NF-kappaB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. European Journal of Nutrition, 52(1), 75–84. https://doi.org/10.1007/s00394-011-0288-y

    Article  CAS  PubMed  Google Scholar 

  239. Munagala, R., Aqil, F., Vadhanam, M. V., & Gupta, R. C. (2013). MicroRNA ‘signature’ during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Letters, 339(2), 175–184. https://doi.org/10.1016/j.canlet.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hong, M. Y., Seeram, N. P., & Heber, D. (2008). Pomegranate polyphenols down-regulate expression of androgen-synthesizing genes in human prostate cancer cells overexpressing the androgen receptor. Journal of Nutritional Biochemistry, 19(12), 848–855. https://doi.org/10.1016/j.jnutbio.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  241. Kim, S. W., Kim, S. M., Bae, H., Nam, D., Lee, J. H., Lee, S. G., et al. (2013). Embelin inhibits growth and induces apoptosis through the suppression of Akt/mTOR/S6K1 signaling cascades. The Prostate, 73(3), 296–305.

    Article  CAS  PubMed  Google Scholar 

  242. Ko, J. H., Lee, S. G., Yang, W. M., Um, J. Y., Sethi, G., Mishra, S., et al. (2018). The application of embelin for cancer prevention and therapy. Molecules, 23(3), ARTN 621. https://doi.org/10.3390/molecules23030621.

  243. Manu, K. A., Shanmugam, M. K., Ong, T. H., Subramaniam, A., Siveen, K. S., Perumal, E., et al. (2013). Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One, 8(3), e57015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Subramaniam, A., Loo, S. Y., Rajendran, P., Manu, K. A., Perumal, E., Li, F., et al. (2013). An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins. Apoptosis, 18(10), 1175–1187.

    Article  CAS  PubMed  Google Scholar 

  245. Cha, T. L., Qiu, L., Chen, C. T., Wen, Y., & Hung, M. C. (2005). Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Research, 65(6), 2287–2295. https://doi.org/10.1158/0008-5472.CAN-04-3250

    Article  CAS  PubMed  Google Scholar 

  246. Hsu, C. M., Hsu, Y. A., Tsai, Y., Shieh, F. K., Huang, S. H., Wan, L., et al. (2010). Emodin inhibits the growth of hepatoma cells: Finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochemical and Biophysical Research Communications, 392(4), 473–478. https://doi.org/10.1016/j.bbrc.2009.10.153

    Article  CAS  PubMed  Google Scholar 

  247. Tuli, H. S., Tuorkey, M. J., Thakral, F., Sak, K., Kumar, M., Sharma, A. K., et al. (2019). Molecular mechanisms of action of genistein in cancer: Recent advances. Frontiers in Pharmacology, 10, 1336. https://doi.org/10.3389/fphar.2019.01336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bektic, J., Berger, A. P., Pfeil, K., Dobler, G., Bartsch, G., & Klocker, H. (2004). Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor β. European Urology, 45(2), 245–251.

    Article  CAS  PubMed  Google Scholar 

  249. Mahmoud, A. M., Al-Alem, U., Ali, M. M., & Bosland, M. C. (2015). Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. Journal of Steroid Biochemistry and Molecular Biology, 152, 62–75. https://doi.org/10.1016/j.jsbmb.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  250. Basak, S., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Molecular Cancer Therapeutics, 7(10), 3195–3202. https://doi.org/10.1158/1535-7163.MCT-08-0617

    Article  CAS  PubMed  Google Scholar 

  251. Oh, H. Y., Leem, J., Yoon, S. J., Yoon, S., & Hong, S. J. (2010). Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochemical and Biophysical Research Communications, 393(2), 319–324. https://doi.org/10.1016/j.bbrc.2010.01.133

    Article  CAS  PubMed  Google Scholar 

  252. Gao, S., Liu, G. Z., & Wang, Z. (2004). Modulation of androgen receptor-dependent transcription by resveratrol and genistein in prostate cancer cells. Prostate, 59(2), 214–225. https://doi.org/10.1002/pros.10375

    Article  CAS  PubMed  Google Scholar 

  253. Zhang, T., Wang, F., Xu, H. X., Yi, L., Qin, Y., Chang, H., et al. (2013). Activation of nuclear factor erythroid 2-related factor 2 and PPARgamma plays a role in the genistein-mediated attenuation of oxidative stress-induced endothelial cell injury. British Journal of Nutrition, 109(2), 223–235. https://doi.org/10.1017/S0007114512001110

    Article  CAS  PubMed  Google Scholar 

  254. Huang, S. L., Chang, T. C., Chao, C. C. K., & Sun, N. K. (2020). Role of the TLR4-androgen receptor axis and genistein in taxol-resistant ovarian cancer cells. Biochemical Pharmacology, 177, 113965. https://doi.org/10.1016/j.bcp.2020.113965

    Article  CAS  PubMed  Google Scholar 

  255. Shen, P., Liu, M. H., Ng, T. Y., Chan, Y. H., & Yong, E. L. (2006). Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. Journal of Nutrition, 136(4), 899–905. https://doi.org/10.1093/jn/136.4.899

    Article  CAS  PubMed  Google Scholar 

  256. Ahn, K. S., Sethi, G., Sung, B., Goel, A., Ralhan, R., & Aggarwal, B. B. (2008). Guggulsterone, a farnesoid X receptor antagonist, inhibits constitutive and inducible STAT3 activation through induction of a protein tyrosine phosphatase SHP-1 (Publication with Expression of Concern. See vol. 78, pg. 5184, 2018). Cancer Research, 68(11), 4406–4415, https://doi.org/10.1158/0008-5472.Can-07-6696.

  257. Shishodia, S., Harikumar, K. B., Dass, S., Ramawat, K. G., & Aggarwal, B. B. (2008). The guggul for chronic diseases: Ancient medicine, modern targets. Anticancer Research, 28(6a), 3647–3664.

    CAS  PubMed  Google Scholar 

  258. Girisa, S., Parama, D., Harsha, C., Banik, K., & Kunnumakkara, A. B. (2020). Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. Exploration of Targeted Anti-tumor Theraphy, 1(5), 313–342, https://doi.org/10.37349/etat.2020.00019.

  259. Bhat, A. A., Prabhu, K. S., Kuttikrishnan, S., Krishnankutty, R., Babu, J., Mohammad, R. M., et al. (2017). Potential therapeutic targets of guggulsterone in cancer. Nutrition & Metabolism, 14, 23. https://doi.org/10.1186/s12986-017-0180-8

    Article  CAS  Google Scholar 

  260. Guan, B. X., Li, H., Yang, Z. D., Hoque, A., & Xu, X. C. (2013). Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer, 119(7), 1321–1329. https://doi.org/10.1002/cncr.27910

    Article  CAS  PubMed  Google Scholar 

  261. Chen, Y., Wang, H. H., Chang, H. H., Huang, Y. H., Wang, J. R., Changchien, C. Y., et al. (2021). Guggulsterone induces apoptosis and inhibits lysosomal-dependent migration in human bladder cancer cells. Phytomedicine, 87, 153587. https://doi.org/10.1016/j.phymed.2021.153587

    Article  CAS  PubMed  Google Scholar 

  262. Yu, J.-H., Zheng, J.-B., Qi, J., Yang, K., Wu, Y.-H., Wang, K., et al. (2019). Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. International Journal of Oncology, 54(3), 879–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Urizar, N. L., Liverman, A. B., Dodds, D. T., Silva, F. V., Ordentlich, P., Yan, Y. Z., et al. (2002). A natural product that lowers cholesterol as an antagonist ligand for FXR. Science, 296(5573), 1703–1706. https://doi.org/10.1126/science.1072891

    Article  CAS  PubMed  Google Scholar 

  264. Lee, J., Lee, K., Lee, J., Lee, K., Jang, K., Heo, J., et al. (2011). Farnesoid X receptor, overexpressed in pancreatic cancer with lymph node metastasis promotes cell migration and invasion. British Journal of Cancer, 104(6), 1027–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kong, J. N., He, Q., Wang, G. H., Dasgupta, S., Dinkins, M. B., Zhu, G., et al. (2015). Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells. International Journal of Cancer, 137(7), 1610–1620. https://doi.org/10.1002/ijc.29542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Tian, H., Gui, Y. N., Wei, Y. H., Shang, B., Sun, J., Ma, S., et al. (2021). Z-guggulsterone induces PD-L1 upregulation partly mediated by FXR, Akt and Erk1/2 signaling pathways in non-small cell lung cancer. International Immunopharmacology, 93, 107395. https://doi.org/10.1016/j.intimp.2021.107395

    Article  CAS  PubMed  Google Scholar 

  267. Kao, T. H., Huang, S. C., Inbaraj, B. S., & Chen, B. H. (2008). Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry. Analytica Chimica Acta, 626(2), 200–211, https://doi.org/10.1016/j.aca.2008.07.049.

  268. Wang, J., & Zhao, J. (1993). The effect of preventing recurrence of cancer metastasis on jiaogulan soup in clinical study. Zhejiang Zhong Yi Za Zhii, 28(20), 529–530.

    Google Scholar 

  269. Piao, X. L., Wu, Q., Yang, J., Park, S. Y., Chen, D. J., & Liu, H. M. (2013). Dammarane-type saponins from heat-processed Gynostemma pentaphyllum show fortified activity against A549 cells. Archives of Pharmacal Research, 36(7), 874–879. https://doi.org/10.1007/s12272-013-0086-6

    Article  CAS  PubMed  Google Scholar 

  270. Piao, X. L., Xing, S. F., Lou, C. X., & Chen, D. J. (2014). Novel dammarane saponins from Gynostemma pentaphyllum and their cytotoxic activities against HepG2 cells. Bioorganic & Medicinal Chemistry Letters, 24(20), 4831–4833. https://doi.org/10.1016/j.bmcl.2014.08.059

    Article  CAS  Google Scholar 

  271. Chen, D. J., Liu, H. M., Xing, S. F., & Piao, X. L. (2014). Cytotoxic activity of gypenosides and gynogenin against non-small cell lung carcinoma A549 cells. Bioorganic & Medicinal Chemistry Letters, 24(1), 186–191. https://doi.org/10.1016/j.bmcl.2013.11.043

    Article  CAS  Google Scholar 

  272. Xing, S. F., Liu, L. H., Zu, M. L., Ding, X. F., Cui, W. Y., Chang, T., et al. (2018). The inhibitory effect of gypenoside stereoisomers, gypenoside L and gypenoside LI, isolated from Gynostemma pentaphyllum on the growth of human lung cancer A549 cells. Journal of Ethnopharmacology, 219, 161–172. https://doi.org/10.1016/j.jep.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  273. Huang, T. H., Tran, V. H., Roufogalis, B. D., & Li, Y. (2007). Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells. Toxicology and Applied Pharmacology, 218(1), 30–36. https://doi.org/10.1016/j.taap.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  274. Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., et al. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine (Maywood, N.J.), 245(5), 486–497. https://doi.org/10.1177/1535370220903671

    Article  CAS  PubMed  Google Scholar 

  275. Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  276. Saiprasad, G., Chitra, P., Manikandan, R., & Sudhandiran, G. (2014). Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. European Journal of Cancer, 50(14), 2489–2507. https://doi.org/10.1016/j.ejca.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  277. Wang, Y. X., Yu, H., Zhang, J., Gao, J., Ge, X., & Lou, G. (2015). Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. Bmc Cancer, 15, 682. https://doi.org/10.1186/s12885-015-1706-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Khamis, A. A. A., Ali, E. M. M., Abd El-Moneim, M. A., Abd-Alhaseeb, M. M., Abu El-Magd, M., & Salim, E. I. (2018). Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomedicine & Pharmacotherapy, 105, 1335–1343. https://doi.org/10.1016/j.biopha.2018.06.105

    Article  CAS  Google Scholar 

  279. Hsu, P. H., Chen, W. H., Chen, J. L., Hsieh, S. C., Lin, S. C., Mai, R. T., et al. (2021). Hesperidin and chlorogenic acid synergistically inhibit the growth of breast cancer cells via estrogen receptor/mitochondrial pathway. Life-Basel, 11(9), ARTN 950. https://doi.org/10.3390/life11090950.

  280. Banik, K., Ranaware, A. M., Deshpande, V., Nalawade, S. P., Padmavathi, G., Bordoloi, D., et al. (2019). Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacological Research, 144, 192–209.

    Article  CAS  PubMed  Google Scholar 

  281. Arora, S., Singh, S., Piazza, G. A., Contreras, C. M., Panyam, J., & Singh, A. P. (2012). Honokiol: A novel natural agent for cancer prevention and therapy. Current Molecular Medicine, 12(10), 1244–1252. https://doi.org/10.2174/156652412803833508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Ong, C. P., Lee, W. L., Tang, Y. Q., & Yap, W. H. (2020). Honokiol: A review of its anticancer potential and mechanisms. Cancers, 12(1), ARTN 48. https://doi.org/10.3390/cancers12010048.

  283. Jung, C. G., Horike, H., Cha, B. Y., Uhm, K. O., Yamauchi, R., Yamaguchi, T., et al. (2010). Honokiol increases ABCA1 expression level by activating retinoid X receptor beta. Biological & Pharmaceutical Bulletin, 33(7), 1105–1111. https://doi.org/10.1248/bpb.33.1105

    Article  CAS  Google Scholar 

  284. Lim, S. L., Park, S. Y., Kang, S., Park, D., Kim, S. H., Um, J. Y., et al. (2015). Morusin induces cell death through inactivating STAT3 signaling in prostate cancer cells. American Journal of Cancer Research, 5(1), 289-U482.

    PubMed  Google Scholar 

  285. Lin, W. L., Lai, D. Y., Lee, Y. J., Chen, N. F., & Tseng, T. H. (2015). Antitumor progression potential of morusin suppressing STAT3 and NFkappaB in human hepatoma SK-Hep1 cells. Toxicology Letters, 232(2), 490–498. https://doi.org/10.1016/j.toxlet.2014.11.031

    Article  CAS  PubMed  Google Scholar 

  286. Dat, N. T., Binh, P. T. X., Van Minh, C., Huong, H. T., & Lee, J. J. (2010). Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia, 81(8), 1224–1227.

    Article  PubMed  Google Scholar 

  287. Wan, L. Z., Ma, B., & Zhang, Y. Q. (2014). Preparation of morusin from Ramulus mori and its effects on mice with transplanted H22 hepatocarcinoma. BioFactors, 40(6), 636–645. https://doi.org/10.1002/biof.1191

    Article  CAS  PubMed  Google Scholar 

  288. Lee, J.-C., Won, S.-J., Chao, C.-L., Wu, F.-L., Liu, H.-S., Ling, P., et al. (2008). Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells. Biochemical and Biophysical Research Communications, 372(1), 236–242.

    Article  CAS  PubMed  Google Scholar 

  289. Li, H., Wang, Q., Dong, L., Liu, C., Sun, Z., Gao, L., et al. (2015). Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. Journal of Experimental & Clinical Cancer Research, 34(1), 1–12.

    Article  Google Scholar 

  290. Baek, S. H., Ko, J.-H., Lee, H., Jung, J., Kong, M., Lee, J.-W., et al. (2016). Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 23(5), 566–577.

    Article  CAS  PubMed  Google Scholar 

  291. Ren, B., Kwah, M. X., Liu, C., Ma, Z., Shanmugam, M. K., Ding, L., et al. (2021). Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Letters, 515, 63–72. https://doi.org/10.1016/j.canlet.2021.05.001

    Article  CAS  PubMed  Google Scholar 

  292. Nonomura, S., Kanagawa, H., & Makimoto, A. (1963). Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of Ko-J O-Kon. (Polygonum Cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi, 83, 988–990.

    Article  CAS  PubMed  Google Scholar 

  293. Diaz, J., Wuertz, B., Galbraith, A., & Ondrey, F. G. (2016). Effects of chalcones, nicotinamide, and resveratrol on PPAR gamma activation in oral cancer cells. Cancer Research, 76, 2611. https://doi.org/10.1158/1538-7445.Am2016-2611

    Article  Google Scholar 

  294. Ulrich, S., Loitsch, S. M., Rau, O., von Knethen, A., Brune, B., Schubert-Zsilavecz, M., et al. (2006). Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Research, 66(14), 7348–7354. https://doi.org/10.1158/0008-5472.Can-05-2777

    Article  CAS  PubMed  Google Scholar 

  295. Li, Y. T., Tian, X. T., Wu, M. L., Zheng, X., Kong, Q. Y., Cheng, X. X., et al. (2018). Resveratrol suppresses the growth and enhances retinoic acid sensitivity of anaplastic thyroid cancer cells. International Journal of Molecular Sciences, 19(4), ARTN 1030. https://doi.org/10.3390/ijms19041030.

  296. Vanden Berghe, W., Sabbe, L., Kaileh, M., Haegeman, G., & Heyninck, K. (2012). Molecular insight in the multifunctional activities of withaferin A. Biochemical Pharmacology, 84(10), 1282–1291. https://doi.org/10.1016/j.bcp.2012.08.027

    Article  CAS  PubMed  Google Scholar 

  297. Bargagna-Mohan, P., Hamza, A., Kim, Y. E., Ho, K. A., Y., Mor-Vaknin, N., Wendschlag, N., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chemistry & Biology, 14(6), 623–634. https://doi.org/10.1016/j.chembiol.2007.04.010

    Article  CAS  Google Scholar 

  298. Shiragannavar, V. D., Gowda, N. G. S., Kumar, D. P., Mirshahi, F., & Santhekadur, P. K. (2021). Withaferin A acts as a novel regulator of liver X receptor-α in HCC. Frontiers in Oncology, 3124.

  299. Lim, Y. P., Cheng, C. H., Chen, W. C., Chang, S. Y., Hung, D. Z., Chen, J. J., et al. (2015). Allyl isothiocyanate (AITC) inhibits pregnane X receptor (PXR) and constitutive androstane receptor (CAR) activation and protects against acetaminophen- and amiodarone-induced cytotoxicity. Archives of Toxicology, 89(1), 57–72. https://doi.org/10.1007/s00204-014-1230-x

    Article  CAS  PubMed  Google Scholar 

  300. Oh, H., Park, S.-H., Kang, M.-K., Kim, Y.-H., Lee, E.-J., Kim, D. Y., et al. (2020). Asaronic acid inhibited glucose-triggered M2-phenotype shift through disrupting the formation of coordinated signaling of IL-4Rα-Tyk2-STAT6 and GLUT1-Akt-mTOR-AMPK. Nutrients, 12(7), 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Papaioannou, M., Schleich, S., Prade, I., Degen, S., Roell, D., Schubert, U., et al. (2009). The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. Journal of Cellular and Molecular Medicine, 13(8b), 2210–2223. https://doi.org/10.1111/j.1582-4934.2008.00426.x

    Article  PubMed  Google Scholar 

  302. Schleich, S., Papaioannou, M., Baniahmad, A., & Matusch, R. (2006). Extracts from Pygeum africanum and other ethnobotanical species with antiandrogenic activity. Planta Medica, 72(9), 807–813. https://doi.org/10.1055/s-2006-946638

    Article  CAS  PubMed  Google Scholar 

  303. Papaioannou, M., Schleich, S., Roell, D., Schubert, U., Tanner, T., Claessens, F., et al. (2010). NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth. Investigational New Drugs, 28(6), 729–743. https://doi.org/10.1007/s10637-009-9304-y

    Article  CAS  PubMed  Google Scholar 

  304. Fiaschetti, G., Grotzer, M. A., Shalaby, T., Castelletti, D., & Arcaro, A. (2011). Quassinoids: From traditional drugs to new cancer therapeutics. Current Medicinal Chemistry, 18(3), 316–328. https://doi.org/10.2174/092986711794839205

    Article  CAS  PubMed  Google Scholar 

  305. Moon, S. J., Jeong, B. C., Kim, H. J., Lim, J. E., Kim, H. J., Kwon, G. Y., et al. (2021). Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics, 11(2), 958–973. https://doi.org/10.7150/thno.51478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Xu, D., Lin, T. H., Yeh, C. R., Cheng, M. A., Chen, L. M., Chang, C., et al. (2014). The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. BioMed Research International, 2014, 713263. https://doi.org/10.1155/2014/713263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Akihisa, T., Higo, N., Tokuda, H., Ukiya, M., Akazawa, H., Tochigi, Y., et al. (2007). Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. Journal of Natural Products, 70(8), 1233–1239. https://doi.org/10.1021/np068075p

    Article  CAS  PubMed  Google Scholar 

  308. Weng, J.-R., Bai, L.-Y., Chiu, C.-F., Hu, J.-L., Chiu, S.-J., & Wu, C.-Y. (2013). Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor γ activation. Evidence-Based Complementary and Alternative Medicine, 2013, 93675. https://doi.org/10.1155/2013/935675

    Article  Google Scholar 

  309. Somjen, D., Grafi-Cohen, M., Weisinger, G., Izkhakov, E., Sharon, O., Kraiem, Z., et al. (2012). Growth inhibition of human thyroid carcinoma and goiter cells in vitro by the isoflavone derivative 7-(O)-carboxymethyl daidzein conjugated to Nt-boc-hexylenediamine. Thyroid, 22(8), 809–813.

    Article  CAS  PubMed  Google Scholar 

  310. Ichikawa, H., Nair, M. S., Takada, Y., Sheeja, D. A., Kumar, M. S., Oommen, O. V., et al. (2006). Isodeoxyelephantopin, a novel sesquiterpene lactone, potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis through suppression of nuclear factor-κB (NF-κB) activation and NF-κB-regulated gene expression. Clinical Cancer Research, 12(19), 5910–5918.

    Article  CAS  PubMed  Google Scholar 

  311. Wolo, M. T., Cowherd, C. M., & Lee, K. H. (1975). Antitumor agents XV: Deoxyelephantopin, an antitumor principle from Elephantopus carolinianus Willd. Journal of Pharmaceutical Sciences, 64(9), 1572–1573.

    Article  PubMed  Google Scholar 

  312. Zou, G., Gao, Z., Wang, J., Zhang, Y., Ding, H., Huang, J., et al. (2008). Deoxyelephantopin inhibits cancer cell proliferation and functions as a selective partial agonist against PPARγ. Biochemical Pharmacology, 75(6), 1381–1392.

  313. Jung, Y. S., Lee, H. S., Cho, H. R., Kim, K. J., Kim, J. H., Safe, S., et al. (2019). Dual targeting of Nur77 and AMPKalpha by isoalantolactone inhibits adipogenesis in vitro and decreases body fat mass in vivo. International Journal of Obesity, 43(5), 952–962. https://doi.org/10.1038/s41366-018-0276-x

    Article  CAS  PubMed  Google Scholar 

  314. Cao, Y., Chu, Q., & Ye, J. (2004). Chromatographic and electrophoretic methods for pharmaceutically active compounds in Rhododendron dauricum. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 812(1–2), 231–240. https://doi.org/10.1016/j.jchromb.2004.06.048

    Article  CAS  PubMed  Google Scholar 

  315. Chae, J., Kim, J. S., Choi, S. T., Lee, S. G., Ojulari, O. V., Kang, Y. J., et al. (2021). Farrerol induces cancer cell death via ERK activation in SKOV3 cells and attenuates TNF-alpha-mediated lipolysis. International Journal of Molecular Sciences, 22(17), 9400. https://doi.org/10.3390/ijms22179400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Neviani, P., Santhanam, R., Trotta, R., Notari, M., Blaser, B. W., Liu, S. J., et al. (2005). The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell, 8(5), 355–368. https://doi.org/10.1016/j.ccr.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  317. Mayati, A., Moreau, A., Le Vee, M., Bruyere, A., Jouan, E., Denizot, C., et al. (2018). Functional polarization of human hepatoma HepaRG cells in response to forskolin. Scientific Reports, 8(1), 16115. https://doi.org/10.1038/s41598-018-34421-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Roullet, J. B., Luft, U. C., Xue, H., Chapman, J., Bychkov, R., Roullet, C. M., et al. (1997). Farnesol inhibits L-type Ca2+ channels in vascular smooth muscle cells. Journal of Biological Chemistry, 272(51), 32240–32246. https://doi.org/10.1074/jbc.272.51.32240

    Article  CAS  PubMed  Google Scholar 

  319. Mo, H., & Elson, C. E. (1999). Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids. Journal of Nutrition, 129(4), 804–813. https://doi.org/10.1093/jn/129.4.804

    Article  CAS  PubMed  Google Scholar 

  320. He, L., Mo, H., Hadisusilo, S., Qureshi, A. A., & Elson, C. E. (1997). Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. Journal of Nutrition, 127(5), 668–674. https://doi.org/10.1093/jn/127.5.668

    Article  CAS  PubMed  Google Scholar 

  321. Takahashi, N., Kawada, T., Goto, T., Yamamoto, T., Taimatsu, A., Matsui, N., et al. (2002). Dual action of isoprenols from herbal medicines on both PPARγ and PPARα in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Letters, 514(2–3), 315–322.

    Article  CAS  PubMed  Google Scholar 

  322. Kim, Y. S., & Milner, J. A. (2005). Targets for indole-3-carbinol in cancer prevention. Journal of Nutritional Biochemistry, 16(2), 65–73. https://doi.org/10.1016/j.jnutbio.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  323. Marconett, C. N., Sundar, S. N., Poindexter, K. M., Stueve, T. R., Bjeldanes, L. F., & Firestone, G. L. (2010). Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Molecular Biology of the Cell, 21(7), 1166–1177. https://doi.org/10.1091/mbc.E09-08-0689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Hsu, J. C., Zhang, J., Dev, A., Wing, A., Bjeldanes, L. F., & Firestone, G. L. (2005). Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis, 26(11), 1896–1904.

    Article  CAS  PubMed  Google Scholar 

  325. Patel, A. R., Spencer, S. D., Chougule, M. B., Safe, S., & Singh, M. (2012). Pharmacokinetic evaluation and in vitro-in vivo correlation (IVIVC) of novel methylene-substituted 3,3’ diindolylmethane (DIM). European Journal of Pharmaceutical Sciences, 46(1–2), 8–16. https://doi.org/10.1016/j.ejps.2012.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Boakye, C. H. A., Doddapaneni, R., Shah, P. P., Patel, A. R., Godugu, C., Safe, S., et al. (2013). Chemoprevention of skin cancer with 1,1-bis (3'-indolyl)-1-(aromatic) methane analog through induction of the orphan nuclear receptor, NR4A2 (Nurr1). Plos One, 8(8), ARTN e69519. https://doi.org/10.1371/journal.pone.0069519.

  327. Yang, L., Zahid, M., Liao, Y., Rogan, E. G., Cavalieri, E. L., Davidson, N. E., et al. (2013). Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells. Carcinogenesis, 34(11), 2587–2592. https://doi.org/10.1093/carcin/bgt246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Palliyaguru, D. L., Yang, L., Chartoumpekis, D. V., Wendell, S. G., Fazzari, M., Skoko, J. J., et al. (2020). Sulforaphane diminishes the formation of mammary tumors in rats exposed to 17beta-estradiol. Nutrients, 12(8), 2282. https://doi.org/10.3390/nu12082282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Hossain, S., Liu, Z. H., & Wood, R. J. (2020). Histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human breast cancer cells. Journal of Food Biochemistry, 44(2), ARTN e13114. https://doi.org/10.1111/jfbc.13114.

  330. Hossain, S., Liu, Z. H., & Wood, R. J. (2021). Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. Journal of the Science of Food and Agriculture, 101(5), 1833–1843. https://doi.org/10.1002/jsfa.10797

    Article  CAS  PubMed  Google Scholar 

  331. Zhou, C. C., Poulton, E. J., Grun, F., Bammler, T. K., Blumberg, B., Thummel, K. E., et al. (2007). The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Molecular Pharmacology, 71(1), 220–229. https://doi.org/10.1124/mol.106.029264

    Article  CAS  PubMed  Google Scholar 

  332. Liu, Y. X., Xie, S. R., Wang, Y., Luo, K., Wang, Y., & Cai, Y. Q. (2012). Liquiritigenin inhibits tumor growth and vascularization in a mouse model of hela cells. Molecules, 17(6), 7206–7216. https://doi.org/10.3390/molecules17067206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Mersereau, J. E., Levy, N., Staub, R. E., Baggett, S., Zogric, T., Chow, S., et al. (2008). Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Molecular and Cellular Endocrinology, 283(1–2), 49–57. https://doi.org/10.1016/j.mce.2007.11.020

    Article  CAS  PubMed  Google Scholar 

  334. Ranaware, A. M., Banik, K., Deshpande, V., Padmavathi, G., Roy, N. K., Sethi, G., et al. (2018). Magnolol: A neolignan from the magnolia family for the prevention and treatment of cancer. International Journal of Molecular Sciences, 19(8), https://doi.org/10.3390/ijms19082362.

  335. Peng, C. Y., Yu, C. C., Huang, C. C., Liao, Y. W., Hsieh, P. L., Chu, P. M., et al. (2022). Magnolol inhibits cancer stemness and IL-6/Stat3 signaling in oral carcinomas. Journal of the Formosan Medical Association, 121(1 Pt 1), 51–57. https://doi.org/10.1016/j.jfma.2021.01.009

    Article  CAS  PubMed  Google Scholar 

  336. Tian, Y., Feng, H., Han, L., Wu, L., Lv, H., Shen, B., et al. (2018). Magnolol alleviates inflammatory responses and lipid accumulation by AMP-activated protein kinase-dependent peroxisome proliferator-activated receptor alpha activation. Frontiers in Immunology, 9, 147. https://doi.org/10.3389/fimmu.2018.00147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Lu, Y., Sun, Y., Zhu, J., Yu, L., Jiang, X., Zhang, J., et al. (2018). Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-gamma and inhibiting Nrf2 pathway. Cell Death & Disease, 9(1), 15. https://doi.org/10.1038/s41419-017-0031-6

    Article  CAS  Google Scholar 

  338. Rontani, J. F., & Volkman, J. K. (2003). Phytol degradation products as biogeochemical tracers in aquatic environments.Organic Geochemistry, 34(1), 1–35, Pii S0146–6380(02)00185–7. https://doi.org/10.1016/S0146-6380(02)00185-7.

  339. Goto, T., Takahashi, N., Kato, S., Egawa, K., Ebisu, S., Moriyama, T., et al. (2005). Phytol directly activates peroxisome proliferator-activated receptor alpha (PPARalpha) and regulates gene expression involved in lipid metabolism in PPARalpha-expressing HepG2 hepatocytes. Biochemical and Biophysical Research Communications, 337(2), 440–445. https://doi.org/10.1016/j.bbrc.2005.09.077

    Article  CAS  PubMed  Google Scholar 

  340. Yang, A. O. S. H., Tongson, J., Kim, K. H., & Park, Y. (2020). Piceatannol attenuates fat accumulation and oxidative stress in steatosis-induced HepG2 cells. Current Research in Food Science, 3, 92–99. https://doi.org/10.1016/j.crfs.2020.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. He, T., Wu, K., Lv, Y., Gong, X., Chen, G. G., & Liang, N. (2009). Effect of 5F from Pteris semipinnata on expression of Nr1d1 in HO-8910PM cell line. Zhongguo Zhong Yao Za Zhi, 34(10), 1268–1271.

    CAS  PubMed  Google Scholar 

  342. Tan, B. S., Kang, O., Mai, C. W., Tiong, K. H., Khoo, A. S. B., Pichika, M. R., et al. (2013). 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor gamma (PPAR gamma). Cancer Letters, 336(1), 127–139. https://doi.org/10.1016/j.canlet.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  343. Shanmugam, M. K., Ahn, K. S., Hsu, A., Woo, C. C., Yuan, Y., Tan, K. H. B., et al. (2018). Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Frontiers in Pharmacology, 9, 1294. https://doi.org/10.3389/fphar.2018.01294

  344. Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328. https://doi.org/10.1002/1099-1573(200008)14:5%3c323::Aid-Ptr621%3e3.0.Co;2-Q

    Article  CAS  PubMed  Google Scholar 

  345. Hajhashemi, V., Ghannadi, A., & Jafarabadi, H. (2004). Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytotherapy Research, 18(3), 195–199. https://doi.org/10.1002/ptr.1390

    Article  CAS  PubMed  Google Scholar 

  346. Shanmugam, M. K., Arfuso, F., Kumar, A. P., Wang, L., Goh, B. C., Ahn, K. S., et al. (2018). Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological Research, 129, 357–364.

    Article  CAS  PubMed  Google Scholar 

  347. Woo, C. C., Loo, S. Y., Gee, V., Yap, C. W., Sethi, G., Kumar, A. P., et al. (2011). Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochemical Pharmacology, 82(5), 464–475.

    Article  CAS  PubMed  Google Scholar 

  348. Huang, W. W., He, T. T., Chai, C. S., Yang, Y., Zheng, Y. H., Zhou, P., et al. (2012). Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. Plos One, 7(5), ARTN e37693. https://doi.org/10.1371/journal.pone.0037693.

  349. Liu, J., Jiang, Z., Xiao, J., Zhang, Y., Lin, S., Duan, W., et al. (2009). Effects of triptolide from Tripterygium wilfordii on ERalpha and p53 expression in two human breast cancer cell lines. Phytomedicine, 16(11), 1006–1013. https://doi.org/10.1016/j.phymed.2009.03.021

    Article  CAS  PubMed  Google Scholar 

  350. Li, L. H., Stanton, J. D., Tolson, A. H., Luo, Y., & Wang, H. B. (2009). Bioactive terpenoids and flavonoids from ginkgo biloba extract induce the expression of hepatic drug-metabolizing enzymes through pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor-mediated pathways. Pharmaceutical Research, 26(4), 872–882. https://doi.org/10.1007/s11095-008-9788-8

    Article  CAS  PubMed  Google Scholar 

  351. Lakshmi, A., & Subramanian, S. (2014). Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz(a)anthracene induced mammary carcinoma in experimental rats. Biochimie, 99, 96–109. https://doi.org/10.1016/j.biochi.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  352. Jia, Y., Hoang, M. H., Jun, H. J., Lee, J. H., & Lee, S. J. (2013). Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic & Medicinal Chemistry Letters, 23(14), 4185–4190. https://doi.org/10.1016/j.bmcl.2013.05.030

    Article  CAS  Google Scholar 

  353. Tu, W. C., Wang, S. Y., Chien, S. C., Lin, F. M., Chen, L. R., Chiu, C. Y., et al. (2007). Diterpenes from Cryptomeria japonica inhibit androgen receptor transcriptional activity in prostate cancer cells. Planta Medica, 73(13), 1407–1409. https://doi.org/10.1055/s-2007-990233

    Article  CAS  PubMed  Google Scholar 

  354. Jacobs, M. N., Nolan, G. T., & Hood, S. R. (2005). Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicology and Applied Pharmacology, 209(2), 123–133. https://doi.org/10.1016/j.taap.2005.03.015

    Article  CAS  PubMed  Google Scholar 

  355. Hoang, M. H., Jia, Y., Jun, H. J., Lee, J. H., Lee, B. Y., & Lee, S. J. (2012). Fucosterol is a selective liver X receptor modulator that regulates the expression of key genes in cholesterol homeostasis in macrophages, hepatocytes, and intestinal cells. Journal of Agricultural and Food Chemistry, 60(46), 11567–11575. https://doi.org/10.1021/jf3019084

    Article  CAS  PubMed  Google Scholar 

  356. Hoang, M. H., Jia, Y., Jun, H. J., Lee, J. H., Lee, D. H., Hwang, B. Y., et al. (2012). Ethyl 2,4,6-trihydroxybenzoate is an agonistic ligand for liver X receptor that induces cholesterol efflux from macrophages without affecting lipid accumulation in HepG2 cells. Bioorganic & Medicinal Chemistry Letters, 22(12), 4094–4099. https://doi.org/10.1016/j.bmcl.2012.04.071

    Article  CAS  Google Scholar 

  357. Jun, H. J., Hoang, M. H., Lee, J. W., Yaoyao, J., Lee, J. H., Lee, D. H., et al. (2012). Iristectorigenin B isolated from Belamcanda chinensis is a liver X receptor modulator that increases ABCA1 and ABCG1 expression in macrophage RAW 264.7 cells. Biotechnology Letters, 34(12), 2213–2221, https://doi.org/10.1007/s10529-012-1036-y.

  358. Lin, H. R. (2013). Paeoniflorin acts as a liver X receptor agonist. Journal of Asian Natural Products Research, 15(1), 35–45. https://doi.org/10.1080/10286020.2012.742510

    Article  CAS  PubMed  Google Scholar 

  359. Kma, L. (2014). Plant extracts and plant-derived compounds: Promising players in countermeasure strategy against radiological exposure: A review. Asian Pacific Journal of Cancer Prevention, 15(6), 2405–2425.

    Article  PubMed  Google Scholar 

  360. Wentworth, J. M., Agostini, M., Love, J., Schwabe, J. W., & Chatterjee, V. K. (2000). St John’s wort, a herbal antidepressant, activates the steroid X receptor. Journal of Endocrinology, 166(3), R11-16. https://doi.org/10.1677/joe.0.166r011

    Article  CAS  PubMed  Google Scholar 

  361. Yang, Y., Ikezoe, T., Takeuchi, T., Adachi, Y., Ohtsuki, Y., Koeffler, H. P., et al. (2006). Zanthoxyli Fructus induces growth arrest and apoptosis of LNCaP human prostate cancer cells in vitro and in vivo in association with blockade of the AKT and AR signal pathways. Oncology Reports, 15(6), 1581–1590.

    PubMed  Google Scholar 

  362. Yang, Y., Ikezoe, T., Zheng, Z., Taguchi, H., Koeffler, H. P., & Zhu, W. G. (2007). Saw Palmetto induces growth arrest and apoptosis of androgen-dependent prostate cancer LNCaP cells via inactivation of STAT 3 and androgen receptor signaling. International Journal of Oncology, 31(3), 593–600.

    PubMed  Google Scholar 

  363. Chen, K. C., Peng, C. C., Chiu, W. T., Cheng, Y. T., Huang, G. T., Hsieh, C. L., et al. (2010). Action mechanism and signal pathways of Psidium guajava L. aqueous extract in killing prostate cancer LNCaP cells. Nutrition and Cancer, 62(2), 260–270, https://doi.org/10.1080/01635580903407130.

  364. Mandal, A., & Bishayee, A. (2015). Mechanism of breast cancer preventive action of pomegranate: Disruption of estrogen receptor and Wnt/beta-catenin signaling pathways. Molecules, 20(12), 22315–22328. https://doi.org/10.3390/molecules201219853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. He, Y. Q., Ma, G. Y., Peng, J. N., Ma, Z. Y., & Hamann, M. T. (2012). Liver X receptor and peroxisome proliferator-activated receptor agonist from Cornus alternifolia. Biochimica et Biophysica Acta, 1820(7), 1021–1026. https://doi.org/10.1016/j.bbagen.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Chen, J., Power, K. A., Mann, J., Cheng, A., & Thompson, L. U. (2007). Dietary flaxseed interaction with tamoxifen induced tumor regression in athymic mice with MCF-7 xenografts by downregulating the expression of estrogen related gene products and signal transduction pathways. Nutrition and Cancer, 58(2), 162–170. https://doi.org/10.1080/01635580701328271

    Article  PubMed  Google Scholar 

  367. Jeyabalan, J., Aqil, F., Munagala, R., Annamalai, L., Vadhanam, M. V., & Gupta, R. C. (2014). Chemopreventive and therapeutic activity of dietary blueberry against estrogen-mediated breast cancer. Journal of Agriculture and Food Chemistry, 62(18), 3963–3971. https://doi.org/10.1021/jf403734j

    Article  CAS  Google Scholar 

  368. Nejati-Koshki, K., Akbarzadeh, A., & Pourhassan-Moghaddam, M. (2014). Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer Cell International, 14, 66. https://doi.org/10.1186/1475-2867-14-66

    Article  PubMed  PubMed Central  Google Scholar 

  369. Hallman, K., Aleck, K., Dwyer, B., Lloyd, V., Quigley, M., Sitto, N., et al. (2017). The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERalpha) in breast cancer cells. Breast Cancer (Dove Med Press), 9, 153–161. https://doi.org/10.2147/BCTT.S125783

    Article  CAS  PubMed  Google Scholar 

  370. Sanaei, M., Kavoosi, F., & Arabloo, M. (2020). Effect of curcumin in comparison with trichostatin A on the reactivation of estrogen receptor alpha gene expression, cell growth inhibition and apoptosis induction in hepatocellular carcinoma Hepa 1–6 cell lline. Asian Pacific Journal of Cancer Prevention: APJCP, 21(4), 1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Sun, M., Estrov, Z., Ji, Y., Coombes, K. R., Harris, D. H., & Kurzrock, R. (2008). Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Molecular Cancer Therapeutics, 7(3), 464–473. https://doi.org/10.1158/1535-7163.MCT-07-2272

    Article  CAS  PubMed  Google Scholar 

  372. Nakamura, K., Yasunaga, Y., Segawa, T., Ko, D., Moul, J. W., Srivastava, S., et al. (2002). Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. International Journal of Oncology, 21(4), 825–830.

    CAS  PubMed  Google Scholar 

  373. Choi, H., Lim, J., & Hong, J. (2010). Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer and Prostatic Diseases, 13(4), 343–349.

    Article  CAS  PubMed  Google Scholar 

  374. Zhang, H. N., Yu, C. X., Zhang, P. J., Chen, W. W., Jiang, A. L., Kong, F., et al. (2007). Curcumin downregulates homeobox gene NKX3.1 in prostate cancer cell LNCaP.Acta Pharmacologica Sinica, 28(3), 423–430, https://doi.org/10.1111/j.1745-7254.2007.00501.x.

  375. Guo, H., Xu, Y. M., Ye, Z. Q., Yu, J. H., & Hu, X. Y. (2013). Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Die Pharmazie, 68(6), 431–434.

    CAS  PubMed  Google Scholar 

  376. Dorai, T., Gehani, N., & Katz, A. (2000). Therapeutic potential of curcumin in human prostate cancer - I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer and Prostatic Diseases, 3(2), 84–93, https://doi.org/10.1038/sj.pcan.4500399.

  377. Thangapazham, R. L., Shaheduzzaman, S., Kim, K. H., Passi, N., Tadese, A., Vahey, M., et al. (2008). Androgen responsive and refractory prostate cancer cells exhibit distinct curcumin regulated transcriptome. Cancer Biology & Therapy, 7(9), 1427–1435. https://doi.org/10.4161/cbt.7.9.6469

    Article  CAS  Google Scholar 

  378. Yallapu, M. M., Khan, S., Maher, D. M., Ebeling, M. C., Sundram, V., Chauhan, N., et al. (2014). Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials, 35(30), 8635–8648. https://doi.org/10.1016/j.biomaterials.2014.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Sharma, V., Kumar, L., Mohanty, S. K., Maikhuri, J. P., Rajender, S., & Gupta, G. (2016). Sensitization of androgen refractory prostate cancer cells to anti androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin. Molecular and Cellular Endocrinology, 431(C), 12–23, https://doi.org/10.1016/j.mce.2016.04.024.

  380. Narayanan, N. K., Nargi, D., Randolph, C., & Narayanan, B. A. (2009). Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. International Journal of Cancer, 125(1), 1–8. https://doi.org/10.1002/ijc.24336

    Article  CAS  PubMed  Google Scholar 

  381. Pham, N. K., Bui, H. T., Tran, T. H., Hoang, T. N. A., Vu, T. H., Do, D. T., et al. (2021). Dammarane triterpenes and phytosterols from Dysoxylum tpongense Pierre and their anti-inflammatory activity against liver X receptors and NF-κB activation. Steroids, 175, 108902.

    Article  CAS  PubMed  Google Scholar 

  382. Schleich, S., Papaioannou, M., Baniahmad, A., & Matusch, R. (2006). Activity-guided isolation of an antiandrogenic compound of Pygeum africanum. Planta medica, 72(06), 547–551.

    Article  CAS  PubMed  Google Scholar 

  383. Levenson, A. S., Gehm, B. D., Pearce, S. T., Horiguchi, J., Simons, L. A., Ward, J. E., et al. (2003). Resveratrol acts as an estrogen receptor (ER) agonist in breast cancer cells stably transfected with ER alpha. International Journal of Cancer, 104(5), 587–596. https://doi.org/10.1002/ijc.10992

    Article  CAS  PubMed  Google Scholar 

  384. Mitchell, S. H., Zhu, W., & Young, C. Y. F. (1999). Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Research, 59(23), 5892–5895.

    CAS  PubMed  Google Scholar 

  385. Wang, Y., Romigh, T., He, X., Orloff, M. S., Silverman, R. H., Heston, W. D., et al. (2010). Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines. Human Molecular Genetics, 19(22), 4319–4329. https://doi.org/10.1093/hmg/ddq354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Harada, N., Murata, Y., Yamaji, R., Miura, T., Inui, H., & Nakano, Y. (2007). Resveratrol down-regulates the androgen receptor at the post-translational level in prostate cancer cells. Journal of Nutritional Science and Vitaminology, 53(6), 556–560. https://doi.org/10.3177/jnsv.53.556

    Article  CAS  PubMed  Google Scholar 

  387. Mitani, T., Harada, N., Tanimori, S., Nakano, Y., Inui, H., & Yamaji, R. (2014). Resveratrol inhibits hypoxia-inducible factor-1alpha-mediated androgen receptor signaling and represses tumor progression in castration-resistant prostate cancer. Journal of Nutritional Science and Vitaminology (Tokyo), 60(4), 276–282.

    Article  CAS  Google Scholar 

  388. Ye, M., Tian, H., Lin, S., Mo, J., Li, Z., Chen, X., et al. (2020). Resveratrol inhibits proliferation and promotes apoptosis via the androgen receptor splicing variant 7 and PI3K/AKT signaling pathway in LNCaP prostate cancer cells. Oncology Letters, 20(5), 169. https://doi.org/10.3892/ol.2020.12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Qi, H. Y., Jiang, Z. Y., Wang, C. Q., Yang, Y., Li, L., He, H., et al. (2017). Sensitization of tamoxifen-resistant breast cancer cells by Z-ligustilide through inhibiting autophagy and accumulating DNA damages. Oncotarget, 8(17), 29300–29317, https://doi.org/10.18632/oncotarget.16832.

  390. Shrestha, R., Mohankumar, K., & Safe, S. (2020). Bis-indole derived nuclear receptor 4A1 (NR4A1) antagonists inhibit TGFβ-induced invasion of embryonal rhabdomyosarcoma cells. American Journal of Cancer Research, 10(8), 2495.

    CAS  PubMed  PubMed Central  Google Scholar 

  391. Yeh, S.-L., Yeh, C.-L., Chan, S.-T., & Chuang, C.-H. (2011). Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Medica, 77(10), 992–998.

    Article  CAS  PubMed  Google Scholar 

  392. Krausova, L., Stejskalova, L., Wang, H., Vrzal, R., Dvorak, Z., Mani, S., et al. (2011). Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochemical Pharmacology, 82(11), 1771–1780. https://doi.org/10.1016/j.bcp.2011.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Helleboid, S., Haug, C., Lamottke, K., Zhou, Y., Wei, J., Daix, S., et al. (2014). The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). Journal of Biomolecular Screening, 19(3), 399–406.

    Article  CAS  PubMed  Google Scholar 

  394. Ao, M., Zhang, J., Qian, Y., Li, B., Wang, X., Chen, J., et al. (2022). Design and synthesis of adamantyl-substituted flavonoid derivatives as anti-inflammatory Nur77 modulators: Compound B7 targets Nur77 and improves LPS-induced inflammation in vitro and in vivo. Bioorganic Chemistry, 120, 105645.

    Article  CAS  PubMed  Google Scholar 

  395. Zhao, J., Khan, S. I., Wang, M., Vasquez, Y., Yang, M. H., Avula, B., et al. (2014). Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder. Journal of Natural Products, 77(3), 509–515.

    Article  CAS  PubMed  Google Scholar 

  396. Tamehiro, N., Sato, Y., Suzuki, T., Hashimoto, T., Asakawa, Y., Yokoyama, S., et al. (2005). Riccardin C: A natural product that functions as a liver X receptor (LXR) α agonist and an LXRβ antagonist. FEBS Letters, 579(24), 5299–5304.

    Article  CAS  PubMed  Google Scholar 

  397. Uemura, T., Goto, T., Kang, M. S., Mizoguchi, N., Hirai, S., Lee, J. Y., et al. (2011). Diosgenin, the main aglycon of fenugreek, inhibits LXRα activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. The Journal of Nutrition, 141(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  398. Goldwasser, J., Cohen, P. Y., Yang, E., Balaguer, P., Yarmush, M. L., & Nahmias, Y. (2010). Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: Role of PPARα PPARγ and LXRα. PloS One, 5(8), e12399.

    Article  PubMed  PubMed Central  Google Scholar 

  399. Sheng, X., Wang, M., Lu, M., Xi, B., Sheng, H., & Zang, Y. Q. (2011). Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. American Journal of Physiology-Endocrinology and Metabolism, 300(5), E886–E893.

    Article  CAS  PubMed  Google Scholar 

  400. Montserrat-de la Paz, S., Fernández-Arche, M., Bermúdez, B., & García-Giménez, M. D. (2015). The sterols isolated from evening primrose oil inhibit human colon adenocarcinoma cell proliferation and induce cell cycle arrest through upregulation of LXR. Journal of Functional Foods, 12, 64–69.

  401. Kao, T.-C., Shyu, M.-H., & Yen, G.-C. (2010). Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. Journal of Agricultural and Food Chemistry, 58(15), 8623–8629.

    Article  CAS  PubMed  Google Scholar 

  402. Kao, T.-C., Wu, C.-H., & Yen, G.-C. (2013). Glycyrrhizic acid and 18β-glycyrrhetinic acid recover glucocorticoid resistance via PI3K-induced AP1 CRE and NFAT activation. Phytomedicine, 20(3–4), 295–302.

    Article  CAS  PubMed  Google Scholar 

  403. Chintharlapalli, S., Papineni, S., Jutooru, I., McAlees, A., & Safe, S. (2007). Structure-dependent activity of glycyrrhetinic acid derivatives as peroxisome proliferator–activated receptor γ agonists in colon cancer cells. Molecular Cancer Therapeutics, 6(5), 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  404. Lee, Y., Chung, E., Lee, K. Y., Lee, Y. H., Huh, B., & Lee, S. K. (1997). Ginsenoside-Rg1, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor. Molecular and Cellular Endocrinology, 133(2), 135–140.

    Article  CAS  PubMed  Google Scholar 

  405. Ferron, P.-J., Hogeveen, K., De Sousa, G., Rahmani, R., Dubreil, E., Fessard, V. r., et al. (2016). Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells. Toxicology in Vitro, 33, 136-146.

  406. Cui, K., Wu, H., Li, Z., Li, H., Yang, R., Guo, H., et al. (2021). Ferulic acid and P-coumaric acid inhibit colon cancer growth through GR/lncRNA 495810/PKM2 mediated aerobic glycolysis. Available at SSRN 3844821. https://doi.org/10.2139/ssrn.3844821

  407. Gasmi, J., & Sanderson, J. T. (2010). Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. Journal of Agricultural and Food Chemistry, 58(23), 12149–12156.

    Article  CAS  PubMed  Google Scholar 

  408. Cvoro, A., Paruthiyil, S., Jones, J. O., Tzagarakis-Foster, C., Clegg, N. J., Tatomer, D., et al. (2007). Selective activation of estrogen receptor-β transcriptional pathways by an herbal extract. Endocrinology, 148(2), 538–547.

    Article  CAS  PubMed  Google Scholar 

  409. Liu, L., Ma, H., Tang, Y., Chen, W., Lu, Y., Guo, J., et al. (2012). Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. Bioorganic & Medicinal Chemistry Letters, 22(1), 154–163.

    Article  Google Scholar 

  410. Huang, T.H.-W., Razmovski-Naumovski, V., Salam, N. K., Duke, R. K., Duke, C. C., & Roufogalis, B. D. (2005). A novel LXR-α activator identified from the natural product Gynostemma pentaphyllum. Biochemical Pharmacology, 70(9), 1298–1308.

    Article  CAS  PubMed  Google Scholar 

  411. Yuan, H.-Q., Kong, F., Wang, X.-L., Young, C. Y., Hu, X.-Y., & Lou, H.-X. (2008). Inhibitory effect of acetyl-11-keto-β-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochemical Pharmacology, 75(11), 2112–2121.

    Article  CAS  PubMed  Google Scholar 

  412. Chung, B. H., Lee, H.-Y., Lee, J. S., & Young, C. Y. (2006). Perillyl alcohol inhibits the expression and function of the androgen receptor in human prostate cancer cells. Cancer Letters, 236(2), 222–228.

    Article  CAS  PubMed  Google Scholar 

  413. Pathirana, C., Stein, R. B., Berger, T. S., Fenical, W., Ianiro, T., Mais, D. E., et al. (1995). Nonsteroidal human progesterone receptor modulators from the marine alga Cymopolia barbata. Molecular Pharmacology, 47(3), 630–635.

    CAS  PubMed  Google Scholar 

  414. Zhao, Z., Wang, L., James, T., Jung, Y., Kim, I., Tan, R., et al. (2015). Reciprocal regulation of ERα and ERβ stability and activity by diptoindonesin G. Chemistry & Biology, 22(12), 1608–1621.

    Article  CAS  Google Scholar 

  415. Lin, W., Huang, J., Liao, X., Yuan, Z., Feng, S., Xie, Y., et al. (2016). Neo-tanshinlactone selectively inhibits the proliferation of estrogen receptor positive breast cancer cells through transcriptional down-regulation of estrogen receptor alpha. Pharmacological Research, 111, 849–858.

    Article  CAS  PubMed  Google Scholar 

  416. Onogi, K., Niwa, K., Tang, L., Yun, W., Mori, H., & Tamaya, T. (2006). Inhibitory effects of Hochu-ekki-to on endometrial carcinogenesis induced by N-methyl-N-nitrosourea and 17β-estradiol in mice. Oncology Reports, 16(6), 1343–1348.

    CAS  Google Scholar 

  417. Marconett, C. N., Morgenstern, T. J., San Roman, A. K., Sundar, S. N., Singhal, A. K., & Firestone, G. L. (2010). BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biology & Therapy, 10(4), 397–405.

    Article  CAS  Google Scholar 

  418. Mora, F. D., Jones, D. K., Desai, P. V., Patny, A., Avery, M. A., Feller, D. R., et al. (2006). Bioassay for the identification of natural product-based activators of peroxisome proliferator-activated receptor-gamma (PPARgamma): The marine sponge metabolite psammaplin A activates PPARgamma and induces apoptosis in human breast tumor cells. Journal of Natural Products, 69(4), 547–552. https://doi.org/10.1021/np050397q

    Article  CAS  PubMed  Google Scholar 

  419. Sadar, M. D., Williams, D. E., Mawji, N. R., Patrick, B. O., Wikanta, T., Chasanah, E., et al. (2008). Sintokamides A to E, chlorinated peptides from the sponge Dysidea sp that inhibit transactivation of the N-terminus of the androgen receptor in prostate cancer cells. Organic Letters, 10(21), 4947–4950. https://doi.org/10.1021/ol802021w

    Article  CAS  PubMed  Google Scholar 

  420. Festa, C., De Marino, S., D’Auria, M. V., Bifulco, G., Renga, B., Fiorucci, S., et al. (2011). Solomonsterols A and B from Theonella swinhoei. The first example of C-24 and C-23 sulfated sterols from a marine source endowed with a PXR agonistic activity. Journal of Medicinal Chemistry, 54(1), 401–405, https://doi.org/10.1021/jm100968b.

  421. Sepe, V., Ummarino, R., D’Auria, M. V., Mencarelli, A., D’Amore, C., Renga, B., et al. (2011). Total synthesis and pharmacological characterization of solomonsterol A, a potent marine pregnane-X-receptor agonist endowed with anti-inflammatory activity. Journal of Medicinal Chemistry, 54(13), 4590–4599. https://doi.org/10.1021/jm200241s

    Article  CAS  PubMed  Google Scholar 

  422. Sepe, V., Ummarino, R., D'Auria, M. V., Lauro, G., Bifulco, G., D'Amore, C., et al. (2012). Modification in the side chain of solomonsterol A: discovery of cholestan disulfate as a potent pregnane-X-receptor agonist. Organic & Biomolecular Chemistry, 10(31), 6350-6362, doi:10.1039/c2ob25800e.

  423. De Marino, S., Ummarino, R., D’Auria, M. V., Chini, M. G., Bifulco, G., Renga, B., et al. (2011). Theonellasterols and conicasterols from Theonella swinhoei. Novel marine natural ligands for human nuclear receptors. Journal of Medicinal Chemistry, 54(8), 3065–3075, https://doi.org/10.1021/jm200169t.

  424. Renga, B., Mencarelli, A., D’Amore, C., Cipriani, S., D’Auria, M. V., Sepe, V., et al. (2012). Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PloS One, 7(1), ARTN e30443. https://doi.org/10.1371/journal.pone.0030443.

  425. Sepe, V., Ummarino, R., D’Auria, M. V., Taglialatela-Scafati, O., De Marino, S., D’Amore, C., et al. (2012). Preliminary structure-activity relationship on theonellasterol, a new chemotype of FXR antagonist, from the marine sponge Theonella swinhoei. Marine Drugs, 10(11), 2448–2466. https://doi.org/10.3390/md10112448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Sepe, V., Ummarino, R., D’Auria, M. V., Chini, M. G., Bifulco, G., Renga, B., et al. (2012). Conicasterol E, a small heterodimer partner sparing farnesoid X receptor modulator endowed with a pregnane X receptor agonistic activity, from the marine sponge Theonella swinhoei. Journal of Medicinal Chemistry, 55(1), 84–93. https://doi.org/10.1021/jm201004p

    Article  CAS  PubMed  Google Scholar 

  427. Chini, M. G., Jones, C. R., Zampella, A., D’Auria, M. V., Renga, B., Fiorucci, S., et al. (2012). Quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts in the stereochemical determination of conicasterol F, a nuclear receptor ligand from Theonella swinhoei. Journal of Organic Chemistry, 77(3), 1489–1496. https://doi.org/10.1021/jo2023763

    Article  CAS  PubMed  Google Scholar 

  428. De Marino, S., Sepe, V., D'Auria, M. V., Bifulco, G., Renga, B., Petek, S., et al. (2011). Towards new ligands of nuclear receptors. Discovery of malaitasterol A, an unique bis-secosterol from marine sponge Theonella swinhoei. Organic & Biomolecular Chemistry, 9(13), 4856–4862, https://doi.org/10.1039/c1ob05378g.

  429. De Marino, S., Ummarino, R., D’Auria, M. V., Chini, M. G., Bifulco, G., D’Amore, C., et al. (2012). 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids, 77(5), 484–495. https://doi.org/10.1016/j.steroids.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  430. Sepe, V., D’Amore, C., Ummarino, R., Renga, B., D’Auria, M. V., Novellino, E., et al. (2014). Insights on pregnane-X-receptor modulation. Natural and semisynthetic steroids from Theonella marine sponges. European Journal of Medicinal Chemistry, 73, 126–134. https://doi.org/10.1016/j.ejmech.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  431. Festa, C., Lauro, G., De Marino, S., D’Auria, M. V., Monti, M. C., Casapullo, A., et al. (2012). Plakilactones from the marine sponge Plakinastrella mamillaris. Discovery of a new class of marine ligands of peroxisome proliferator-activated receptor γ. Journal of Medicinal Chemistry, 55(19), 8303–8317.

  432. Festa, C., D’Amore, C., Renga, B., Lauro, G., De Marino, S., D’Auria, M. V., et al. (2013). Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Marine Drugs, 11(7), 2314–2327. https://doi.org/10.3390/md11072314

    Article  PubMed  PubMed Central  Google Scholar 

  433. Chianese, G., Sepe, V., Limongelli, V., Renga, B., D’Amore, C., Zampella, A., et al. (2014). Incisterols, highly degraded marine sterols, are a new chemotype of PXR agonists. Steroids, 83, 80–85. https://doi.org/10.1016/j.steroids.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  434. Meimetis, L. G., Williams, D. E., Mawji, N. R., Banuelos, C. A., Lal, A. A., Park, J. J., et al. (2012). Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: Structure elucidation, synthesis, and biological activity. Journal of Medicinal Chemistry, 55(1), 503–514. https://doi.org/10.1021/jm2014056

    Article  CAS  PubMed  Google Scholar 

  435. Wang, S. S., Wang, Z., Lin, S. C., Zheng, W. L., Wang, R., Jin, S. K., et al. (2012). Revealing a natural marine product as a novel agonist for retinoic acid receptors with a unique binding mode and inhibitory effects on cancer cells. Biochemical Journal, 446, 79–87. https://doi.org/10.1042/Bj20120726

    Article  CAS  PubMed  Google Scholar 

  436. Di Leva, F. S., Festa, C., D’Amore, C., De Marino, S., Renga, B., D’Auria, M. V., et al. (2013). Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. Journal of Medicinal Chemistry, 56(11), 4701–4717, https://doi.org/10.1021/jm400419e.

  437. Zhou, M., Peng, B. R., Tian, W., Su, J. H., Wang, G., Lin, T., et al. (2020). 12-Deacetyl-12-epi-scalaradial, a scalarane sesterterpenoid from a marine sponge Hippospongia sp., induces HeLa cells apoptosis via MAPK/ERK pathway and modulates nuclear receptor Nur77. Marine Drugs, 18(7), 375. https://doi.org/10.3390/md18070375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Wu, Y., Liao, H., Liu, L.-Y., Sun, F., Chen, H.-F., Jiao, W.-H., et al. (2020). Phakefustatins A-C: Kynurenine-bearing cycloheptapeptides as RXRα modulators from the marine sponge Phakellia fusca. Organic Letters, 22(17), 6703–6708.

    Article  CAS  PubMed  Google Scholar 

  439. Machida, K., Abe, T., Arai, D., Okamoto, M., Shimizu, I., de Voogd, N. J., et al. (2014). Cinanthrenol A, an estrogenic steroid containing phenanthrene nucleus, from a marine sponge Cinachyrella sp. Organic Letters, 16(6), 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  440. Parrish, S. M., Neupane, R. P., Harper, M. K., Head, J., & Williams, P. G. (2019). Myrmenaphthol A, isolated from a Hawaiian sponge of the genus Myrmekioderma. Journal of Natural Products, 82(9), 2668–2671. https://doi.org/10.1021/acs.jnatprod.9b00665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Imperatore, C., D’Aniello, F., Aiello, A., Fiorucci, S., D’Amore, C., Sepe, V., et al. (2014). Phallusiasterols A and B: Two new sulfated sterols from the Mediterranean tunicate Phallusia fumigata and their effects as modulators of the PXR receptor. Marine Drugs, 12(4), 2066–2078. https://doi.org/10.3390/md12042066

    Article  PubMed  PubMed Central  Google Scholar 

  442. Imperatore, C., Senese, M., Aiello, A., Luciano, P., Fiorucci, S., D’Amore, C., et al. (2016). Phallusiasterol C, A new disulfated steroid from the Mediterranean Tunicate Phallusia fumigata. Marine Drugs, 14(6), 117. https://doi.org/10.3390/md14060117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Fidler, A. E., Holland, P. T., Reschly, E. J., Ekins, S., & Krasowski, M. D. (2012). Activation of a tunicate (Ciona intestinalis) xenobiotic receptor orthologue by both natural toxins and synthetic toxicants. Toxicon, 59(2), 365–372. https://doi.org/10.1016/j.toxicon.2011.12.008

    Article  CAS  PubMed  Google Scholar 

  444. Mensah-Osman, E., Lin, H.-L., Reinke, D., Hollenberg, P., & Baker, L. (2005). Ecteinascidin-743 is a potent inhibitor of P450 3A4 enzyme and accumulates cytoplasmic PXR to inhibit transcription of P450 3A4 and MDR1: Implications for the enhancement of cytotoxicity to chemotherapeutic agents in osteosarcoma. Journal of Clinical Oncology, 23(16_suppl), 9026–9026.

  445. Sepe, V., Di Leva, F. S., D’Amore, C., Festa, C., De Marino, S., Renga, B., et al. (2014). Marine and semi-synthetic hydroxysteroids as new scaffolds for pregnane X receptor modulation. Marine Drugs, 12(6), 3091–3115. https://doi.org/10.3390/md12063091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Sepe, V., Bifulco, G., Renga, B., D’Amore, C., Fiorucci, S., & Zampella, A. (2011). Discovery of sulfated sterols from marine invertebrates as a new class of marine natural antagonists of farnesoid-X-receptor. Journal of Medicinal Chemistry, 54(5), 1314–1320. https://doi.org/10.1021/jm101336m

    Article  CAS  PubMed  Google Scholar 

  447. Popolo, A., Piccinelli, A. L., Morello, S., Sorrentino, R., Osmany, C. R., Rastrelli, L., et al. (2011). Cytotoxic activity of nemorosone in human MCF-7 breast cancer cells. Canadian Journal of Physiology and Pharmacology, 89(1), 50–57. https://doi.org/10.1139/y10-100

    Article  CAS  PubMed  Google Scholar 

  448. Moutsatsou, P., Papoutsi, Z., Kassi, E., Heldring, N., Zhao, C. Y., Tsiapara, A., et al. (2010). Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PloS One, 5(12), ARTN e15594. https://doi.org/10.1371/journal.pone.0015594.

  449. Zhao, Z., Hong, W., Zeng, Z., Wu, Y., Hu, K., Tian, X., et al. (2012). Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4alpha in vitro and in vivo. Journal of Biological Chemistry, 287(36), 30181–30190. https://doi.org/10.1074/jbc.M112.370312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Deng, Z., Zheng, L. F., Xie, X. W., Wei, H. K., & Peng, J. (2020). GPA peptide enhances Nur77 expression in intestinal epithelial cells to exert a protective effect against DSS-induced colitis. The Faseb Journal, 34(11), 15364–15378. https://doi.org/10.1096/fj.202000391RR

    Article  CAS  PubMed  Google Scholar 

  451. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 391(6662), 79–82. https://doi.org/10.1038/34178

    Article  CAS  PubMed  Google Scholar 

  452. Shiraki, T., Kamiya, N., Shiki, S., Kodama, T. S., Kakizuka, A., & Jingami, H. (2005). α, β-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor γ. Journal of Biological Chemistry, 280(14), 14145–14153.

    Article  CAS  PubMed  Google Scholar 

  453. Shappell, S. B., Gupta, R. A., Manning, S., Whitehead, R., Boeglin, W. E., Schneider, C., et al. (2001). 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Research, 61(2), 497–503.

    CAS  PubMed  Google Scholar 

  454. Pettersson, F., Dalgleish, A. G., Bissonnette, R. P., & Colston, K. W. (2002). Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax. British Journal of Cancer, 87(5), 555–561. https://doi.org/10.1038/sj.bjc.6600496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Campbell, S. E., Stone, W. L., Whaley, S. G., Qui, M., & Krishnan, K. (2003). Gamma (gamma) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (gamma) expression in SW 480 human colon cancer cell lines. BMC Cancer, 3, 25. https://doi.org/10.1186/1471-2407-3-25

    Article  PubMed  PubMed Central  Google Scholar 

  456. Kinjo, J., Tsuchihashi, R., Morito, K., Hirose, T., Aomori, T., Nagao, T., et al. (2004). Interactions of phytoestrogens with estrogen receptors alpha and beta (III). Estrogenic activities of soy isoflavone aglycones and their metabolites isolated from human urine. Biological & Pharmaceutical Bulletin, 27(2), 185–188, https://doi.org/10.1248/bpb.27.185.

  457. Maggiora, M., Bologna, M., Ceru, M. P., Possati, L., Angelucci, A., Cimini, A., et al. (2004). An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. International Journal of Cancer, 112(6), 909–919. https://doi.org/10.1002/ijc.20519

    Article  CAS  PubMed  Google Scholar 

  458. Kuniyasu, H., Yoshida, K., Sasaki, T., Sasahira, T., Fujii, K., & Ohmori, H. (2006). Conjugated linoleic acid inhibits peritoneal metastasis in human gastrointestinal cancer cells. International Journal of Cancer, 118(3), 571–576. https://doi.org/10.1002/ijc.21368

    Article  CAS  PubMed  Google Scholar 

  459. Evans, N. P., Misyak, S. A., Schmelz, E. M., Guri, A. J., Hontecillas, R., & Bassaganya-Riera, J. (2010). Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARγ. The Journal of Nutrition, 140(3), 515–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Sun, H., Berquin, I. M., & Edwards, I. J. (2005). Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Research, 65(10), 4442–4447. https://doi.org/10.1158/0008-5472.CAN-04-4200

    Article  CAS  PubMed  Google Scholar 

  461. Sun, H., Berquin, I. M., Owens, R. T., O’Flaherty, J. T., & Edwards, I. J. (2008). Peroxisome proliferator-activated receptor gamma-mediated up-regulation of syndecan-1 by n-3 fatty acids promotes apoptosis of human breast cancer cells. Cancer Research, 68(8), 2912–2919. https://doi.org/10.1158/0008-5472.CAN-07-2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Edwards, I. J., Sun, H., Hu, Y., Berquin, I. M., O’Flaherty, J. T., Cline, J. M., et al. (2008). In vivo and in vitro regulation of syndecan 1 in prostate cells by n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 283(26), 18441–18449. https://doi.org/10.1074/jbc.M802107200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Lampen, A., Leifheit, M., Voss, J., & Nau, H. (2005). Molecular and cellular effects of cis-9, trans-11-conjugated linoleic acid in enterocytes: Effects on proliferation, differentiation, and gene expression. Biochimica et Biophysica Acta, 1735(1), 30–40. https://doi.org/10.1016/j.bbalip.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  464. Kameue, C., Tsukahara, T., & Ushida, K. (2006). Alteration of gene expression in the colon of colorectal cancer model rat by dietary sodium gluconate. Bioscience Biotechnology and Biochemistry, 70(3), 606–614. https://doi.org/10.1271/bbb.70.606

    Article  CAS  PubMed  Google Scholar 

  465. Zand, H., Rhimipour, A., Bakhshayesh, M., Shafiee, M., Nour Mohammadi, I., & Salimi, S. (2007). Involvement of PPAR-gamma and p53 in DHA-induced apoptosis in Reh cells. Molecular and Cellular Biochemistry, 304(1–2), 71–77. https://doi.org/10.1007/s11010-007-9487-5

    Article  CAS  PubMed  Google Scholar 

  466. Lee, H. J., Ju, J., Paul, S., So, J. Y., DeCastro, A., Smolarek, A., et al. (2009). Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-gamma. Clinical Cancer Research, 15(12), 4242–4249. https://doi.org/10.1158/1078-0432.CCR-08-3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Smolarek, A. K., So, J. Y., Burgess, B., Kong, A.-N.T., Reuhl, K., Lin, Y., et al. (2012). Dietary administration of δ-and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor–positive, but not HER-2 breast cancer. Cancer Prevention Research, 5(11), 1310–1320.

    Article  CAS  PubMed  Google Scholar 

  468. Smolarek, A. K., So, J. Y., Thomas, P. E., Lee, H. J., Paul, S., Dombrowski, A., et al. (2013). Dietary tocopherols inhibit cell proliferation, regulate expression of ERalpha, PPARgamma, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Molecular Carcinogenesis, 52(7), 514–525. https://doi.org/10.1002/mc.21886

    Article  CAS  PubMed  Google Scholar 

  469. Yang, L., Yuan, J., Liu, L., Shi, C., Wang, L., Tian, F., et al. (2013). α-linolenic acid inhibits human renal cell carcinoma cell proliferation through PPAR-γ activation and COX-2 inhibition. Oncology Letters, 6(1), 197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Attia, Y. M., Tawfiq, R. A., Ali, A. A., & Elmazar, M. M. (2017). The FXR agonist, obeticholic acid, suppresses HCC proliferation & metastasis: Role of IL-6/STAT3 signalling pathway. Science and Reports, 7(1), 12502. https://doi.org/10.1038/s41598-017-12629-4

    Article  CAS  Google Scholar 

  471. Fang, H., Zhang, J., Ao, M., He, F., Chen, W., Qian, Y., et al. (2020). Synthesis and discovery of ω-3 polyunsaturated fatty acid-alkanolamine (PUFA-AA) derivatives as anti-inflammatory agents targeting Nur77. Bioorganic Chemistry, 105, 104456.

    Article  CAS  PubMed  Google Scholar 

  472. Tabata, Y., Iizuka, Y., Kashiwa, J., Masuda, N. T., Shinei, R., Kurihara, K.-I., et al. (2001). Fungal metabolites, PF1092 compounds and their derivatives, are nonsteroidal and selective progesterone receptor modulators. European Journal of Pharmacology, 430(2–3), 159–165.

    Article  CAS  PubMed  Google Scholar 

  473. Muthyala, R. S., Ju, Y. H., Sheng, S. B., Williams, L. D., Doerge, D. R., Katzenellenbogen, B. S., et al. (2004). Equol, a natural estrogenic metabolite from soy isoflavones: Convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorganic & Medicinal Chemistry, 12(6), 1559–1567. https://doi.org/10.1016/j.bmc.2003.11.035

    Article  CAS  Google Scholar 

  474. Zheng, W., Zhang, Y., Ma, D., Li, G., & Wang, P. (2011). Anti-invasion effects of R- and S-enantiomers of equol on prostate cancer PC3, DU145 cells. Wei Sheng Yan Jiu, 40(4), 423–425, 430.

  475. Kelly, D., Campbell, J. I., King, T. P., Grant, G., Jansson, E. A., Coutts, A. G., et al. (2004). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nature Immunology, 5(1), 104–112. https://doi.org/10.1038/ni1018

    Article  CAS  PubMed  Google Scholar 

  476. Lee, S. K., Kim, H. J., Chi, S. G., Jang, J. Y., Nam, K. D., Kim, N. H., et al. (2005). Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells. The Korean Journal of Gastroenterology, 45(5), 328–334.

    PubMed  Google Scholar 

  477. Zhan, Y. P., Du, X. P., Chen, H. Z., Liu, J. J., Zhao, B. X., Huang, D. H., et al. (2008). Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nature Chemical Biology, 4(9), 548–556. https://doi.org/10.1038/nchembio.106

    Article  CAS  PubMed  Google Scholar 

  478. Zaidman, B. Z., Wasser, S. P., Nevo, E., & Mahajna, J. (2008). Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Molecular Biology Reports, 35(2), 107–117. https://doi.org/10.1007/s11033-007-9059-5

    Article  CAS  PubMed  Google Scholar 

  479. Moon, H. S., Lim, H., Moon, S., Oh, H. L., Kim, Y. T., Kim, M. K., et al. (2009). Benzyldihydroxyoctenone, a novel anticancer agent, induces apoptosis via mitochondrial-mediated pathway in androgen-sensitive LNCaP prostate cancer cells. Bioorganic & Medicinal Chemistry Letters, 19(3), 742–744. https://doi.org/10.1016/j.bmcl.2008.12.029

    Article  CAS  Google Scholar 

  480. Venkatesh, M., Mukherjee, S., Wang, H., Li, H., Sun, K., Benechet, A. P., et al. (2014). Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41(2), 296–310. https://doi.org/10.1016/j.immuni.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Meng, J., Fan, Y., Su, M., Chen, C., Ren, T., Wang, J., et al. (2014). WLIP derived from Lasiosphaera fenzlii Reich exhibits anti-tumor activity and induces cell cycle arrest through PPAR-γ associated pathways. International Immunopharmacology, 19(1), 37–44.

    Article  CAS  PubMed  Google Scholar 

  482. Byndloss, M. X., Olsan, E. E., Rivera-Chavez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., et al. (2017). Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 357(6351), 570–575. https://doi.org/10.1126/science.aam9949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Xie, C. L., Zhang, D., Xia, J. M., Hu, C. C., Lin, T., Lin, Y. K., et al. (2019). Steroids from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475 induced apoptosis via retinoid X receptor (RXR)-alpha pathway. Marine Drugs, 17(3), 178. https://doi.org/10.3390/md17030178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Khan, I., Huang, G., Li, X.-A., Liao, W., Leong, W. K., Xia, W., et al. (2019). Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice. Pharmacological Research, 148, 104448.

    Article  CAS  PubMed  Google Scholar 

  485. Dvorak, Z., Kopp, F., Costello, C. M., Kemp, J. S., Li, H., Vrzalova, A., et al. (2020). Targeting the pregnane X receptor using microbial metabolite mimicry.Embo Molecular Medicine, 12(4), ARTN e11621. https://doi.org/10.15252/emmm.201911621.

  486. Zhang, X., Li, T., Liu, S., Xu, Y., Meng, M., Li, X., et al. (2020). beta-glucan from Lentinus edodes inhibits breast cancer progression via the Nur77/HIF-1alpha axis. Bioscience Reports, 40(12). 10.1042/BSR20201006.

  487. Wang, D., Zhu, X., Tang, X., Li, H., Yizhen, X., & Chen, D. (2020). Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. Journal of Food Science, 85(6), 1872–1890. https://doi.org/10.1111/1750-3841.15134

    Article  CAS  PubMed  Google Scholar 

  488. Sondergaard, T. E., Hansen, F. T., Purup, S., Nielsen, A. K., Bonefeld-Jorgensen, E. C., Giese, H., et al. (2011). Fusarin C acts like an estrogenic agonist and stimulates breast cancer cells in vitro. Toxicology Letters, 205(2), 116–121. https://doi.org/10.1016/j.toxlet.2011.05.1029

    Article  CAS  PubMed  Google Scholar 

  489. Meng, L., Feng, B., Tao, H., Yang, T., Meng, Y., Zhu, W., et al. (2011). A novel antioestrogen agent (3R,6R)-bassiatin inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression in 17beta-oestradiol-treated MCF-7 cells. Cell Biology International, 35(6), 599–605. https://doi.org/10.1042/CBI20100765

    Article  CAS  PubMed  Google Scholar 

  490. Simmons, L., Kaufmann, K., Garcia, R., Schwar, G., Huch, V., & Muller, R. (2011). Bendigoles D-F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorganic & Medicinal Chemistry, 19(22), 6570–6575. https://doi.org/10.1016/j.bmc.2011.05.044.

  491. Nepelska, M., de Wouters, T., Jacouton, E., Beguet-Crespel, F., Lapaque, N., Dore, J., et al. (2017). Commensal gut bacteria modulate phosphorylation-dependent PPARgamma transcriptional activity in human intestinal epithelial cells. Science and Reports, 7, 43199. https://doi.org/10.1038/srep43199

    Article  Google Scholar 

  492. Aichinger, G., Beisl, J., & Marko, D. (2018). The hop polyphenols xanthohumol and 8-prenyl-naringenin antagonize the estrogenic effects of fusarium mycotoxins in human endometrial cancer cells. Frontiers in Nutrition, 5, 85. https://doi.org/10.3389/fnut.2018.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Zhao, J. C., Luan, Z. L., Liang, J. H., Cheng, Z. B., Sun, C. P., Wang, Y. L., et al. (2018). Drechmerin H, a novel 1(2), 2(18)-diseco indole diterpenoid from the fungus Drechmeria sp as a natural agonist of human pregnane X receptor. Bioorganic Chemistry, 79, 250–256. https://doi.org/10.1016/j.bioorg.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  494. Kovacs, P., Csonka, T., Kovacs, T., Sari, Z., Ujlaki, G., Sipos, A., et al. (2019). Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers, 11(9), ARTN 1255. https://doi.org/10.3390/cancers11091255.

  495. Sari, Z., Miko, E., Kovacs, T., Janko, L., Csonka, T., Lente, G., et al. (2020). Indolepropionic acid, a metabolite of the microbiome, has cytostatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers, 12(9), ARTN 2411. https://doi.org/10.3390/cancers12092411.

  496. Zhao, Y., Zhao, C. X., Lu, J., Wu, J., Li, C. H., Hu, Z. Y., et al. (2019). Sesterterpene MHO7 suppresses breast cancer cells as a novel estrogen receptor degrader. Pharmacological Research, 146, 104294. https://doi.org/10.1016/j.phrs.2019.104294

    Article  CAS  PubMed  Google Scholar 

  497. Li, T., Hu, S. M., Pang, X. Y., Wang, J. F., Yin, J. Y., Li, F. H., et al. (2020). The marine-derived furanone reduces intracellular lipid accumulation in vitro by targeting LXRalpha and PPARalpha. Journal of Cellular and Molecular Medicine, 24(6), 3384–3398. https://doi.org/10.1111/jcmm.15012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Liang, Z., Gu, T., Wang, J., She, J., Ye, Y., Cao, W., et al. (2021). Chromene and chromone derivatives as liver X receptors modulators from a marine-derived Pestalotiopsis neglecta fungus. Bioorganic Chemistry, 112, 104927.

    Article  CAS  PubMed  Google Scholar 

  499. Lev, E. (2003). Traditional healing with animals (zootherapy): Medieval to present-day Levantine practice. Journal of Ethnopharmacology, 85(1), 107–118. https://doi.org/10.1016/s0378-8741(02)00377-x

    Article  PubMed  Google Scholar 

  500. Alves, R. R. N., Rosa, I. L., & Santana, G. G. (2007). The role of animal-derived remedies as complementary medicine in Brazil. BioScience, 57(11), 949–955. https://doi.org/10.1641/B571107

    Article  Google Scholar 

  501. Quave, C. L., Lohani, U., Verde, A., Fajardo, J., Rivera, D., Obon, C., et al. (2010). A comparative assessment of zootherapeutic remedies from selected areas in Albania, Italy, Spain and Nepal. Journal of Ethnobiology, 30(1), 92–125. https://doi.org/10.2993/0278-0771-30.1.92

    Article  PubMed  PubMed Central  Google Scholar 

  502. Dominguez-Martin, E. M., Tavares, J., Rijo, P., & Diaz-Lanza, A. M. (2020). Zoopharmacology: A way to discover new cancer treatments. Biomolecules, 10(6), https://doi.org/10.3390/biom10060817.

  503. Jang, A., Jo, C., Kang, K. S., & Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry, 107(1), 327–336. https://doi.org/10.1016/j.foodchem.2007.08.036

    Article  CAS  Google Scholar 

  504. Yu, L., Yang, L., An, W., & Su, X. L. (2014). Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. Journal of Cellular Biochemistry, 115(4), 697–711. https://doi.org/10.1002/jcb.24711

    Article  CAS  PubMed  Google Scholar 

  505. Su, L. Y., Xu, G. H., Shen, J., Tuo, Y., Zhang, X. G., Jia, S. Q., et al. (2010). Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncology Reports, 23(1), 3–9. https://doi.org/10.3892/or_00000599

    Article  CAS  PubMed  Google Scholar 

  506. Ganjam, L. S., Thornton, W. H., Marshall, R. T., & Macdonald, R. S. (1997). Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. Journal of Dairy Science, 80(10), 2325–2329. https://doi.org/10.3168/jds.S0022-0302(97)76183-6

    Article  CAS  PubMed  Google Scholar 

  507. Wu, X., Chen, D., & Xie, G. R. (2006). Effects of Gekko sulfated polysaccharide on the proliferation and differentiation of hepatic cancer cell line. Cell Biology International, 30(8), 659–664. https://doi.org/10.1016/j.cellbi.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  508. Ding, X.-L., Man, Y.-N., Hao, J., Zhu, C.-H., Liu, C., Yang, X., et al. (2016). The antitumor effect of Gekko sulfated glycopeptide by inhibiting bFGF-induced lymphangiogenesis. BioMed Research International, 2016, 7396392. https://doi.org/10.1155/2016/7396392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Calcabrini, C., Catanzaro, E., Bishayee, A., Turrini, E., & Fimognari, C. (2017). Marine sponge natural products with anticancer potential: An updated review. Marine Drugs, 15(10), 310.

    Article  PubMed  PubMed Central  Google Scholar 

  510. He, S., Mao, X., Zhang, T., Guo, X., Ge, Y., Ma, C., et al. (2016). Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). Journal of Microencapsulation, 33(4), 344–354. https://doi.org/10.1080/02652048.2016.1194904

    Article  CAS  PubMed  Google Scholar 

  511. El Ouar, I., Braicu, C., Naimi, D., Irimie, A., & Berindan-Neagoe, I. (2017). Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T. Pharmacognosy Magazine, 13(50), 281.

    Article  PubMed  PubMed Central  Google Scholar 

  512. Jeyamogan, S., Khan, N. A., & Siddiqui, R. (2017). Animals living in polluted environments are a potential source of anti-tumor molecule(s). Cancer Chemotherapy and Pharmacology, 80(5), 919–924.

    Article  PubMed  Google Scholar 

  513. Wang, L. H., Dong, C., Li, X., Han, W. Y., & Su, X. L. (2017). Anticancer potential of bioactive peptides from animal sources (review). Oncology Reports, 38(2), 637–651. https://doi.org/10.3892/or.2017.5778

    Article  CAS  PubMed  Google Scholar 

  514. Yang, C., Li, Q., & Li, Y. (2014). Targeting nuclear receptors with marine natural products. Marine Drugs, 12(2), 601–635.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Ramesh, C., Tulasi, B. R., Raju, M., Thakur, N., & Dufossé, L. (2021). Marine natural products from tunicates and their associated microbes. Marine Drugs, 19(6), 308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Waheed, M., Hussain, M. B., Javed, A., Mushtaq, Z., Hassan, S., Shariati, M. A., et al. (2019). Honey and cancer: A mechanistic review. Clinical Nutrition, 38(6), 2499–2503.

    Article  CAS  PubMed  Google Scholar 

  517. Arung, E. T., Ramadhan, R., Khairunnisa, B., Amen, Y., Matsumoto, M., Nagata, M., et al. (2021). Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines. Saudi Journal of Biological Sciences, 28(12), 7182–7189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Ding, J., Chua, P.-J., Bay, B.-H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine, 239(4), 387–393.

    Article  PubMed  Google Scholar 

  519. Sarfo-Poku, C., Eshun, O., & Lee, K. H. (2016). Medical application of scorpion venom to breast cancer: A mini-review. Toxicon, 122, 109–112.

    Article  CAS  PubMed  Google Scholar 

  520. Lee, N., Spears, M. E., Carlisle, A. E., & Kim, D. (2020). Endogenous toxic metabolites and implications in cancer therapy. Oncogene, 39(35), 5709–5720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. O’Flaherty, J. T., Rogers, L. C., Paumi, C. M., Hantgan, R. R., Thomas, L. R., Clay, C. E., et al. (2005). 5-Oxo-ETE analogs and the proliferation of cancer cells. Biochimica et Biophysica Acta, 1736(3), 228–236. https://doi.org/10.1016/j.bbalip.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  522. Pham, J. V., Yilma, M. A., Feliz, A., Majid, M. T., Maffetone, N., Walker, J. R., et al. (2019). A review of the microbial production of bioactive natural products and biologics. Frontiers in Microbiology, 10, 1404.

    Article  PubMed  PubMed Central  Google Scholar 

  523. Sharma, M., Tuaine, J., McLaren, B., Waters, D. L., Black, K., Jones, L. M., et al. (2016). Chemotherapy agents alter plasma lipids in breast cancer patients and show differential effects on lipid metabolism genes in liver cells. Plos One, 11(1), ARTN e0148049. https://doi.org/10.1371/journal.pone.0148049.

  524. Pirouzpanah, S., Asemani, S., Shayanfar, A., Baradaran, B., & Montazeri, V. (2019). The effects of Berberis vulgaris consumption on plasma levels of IGF-1, IGFBPs, PPAR-gamma and the expression of angiogenic genes in women with benign breast disease: A randomized controlled clinical trial. BMC Complementary and Alternative Medicine, 19(1), 324. https://doi.org/10.1186/s12906-019-2715-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Komatsu, Y., Yoshino, T., Yamazaki, K., Yuki, S., Machida, N., Sasaki, T., et al. (2014). Phase 1 study of efatutazone, a novel oral peroxisome proliferator-activated receptor gamma agonist, in combination with FOLFIRI as second-line therapy in patients with metastatic colorectal cancer. Investigational New Drugs, 32(3), 473–480. https://doi.org/10.1007/s10637-013-0056-3

    Article  CAS  PubMed  Google Scholar 

  526. Hamilton-Reeves, J. M., Rebello, S. A., Thomas, W., Slaton, J. W., & Kurzer, M. S. (2007). Isoflavone-rich soy protein isolate suppresses androgen receptor expression without altering estrogen receptor-beta expression or serum hormonal profiles in men at high risk of prostate cancer. Journal of Nutrition, 137(7), 1769–1775. https://doi.org/10.1093/jn/137.7.1769

    Article  CAS  PubMed  Google Scholar 

  527. Zhang, X., Wang, Q., Neil, B., & Chen, X. A. (2010). Effect of lycopene on androgen receptor and prostate-specific antigen velocity. Chinese Medical Journal, 123(16), 2231–2236. https://doi.org/10.3760/cma.j.issn.0366-6999.2010.16.014

    Article  CAS  PubMed  Google Scholar 

  528. Ide, H., Tokiwa, S., Sakamaki, K., Nishio, K., Isotani, S., Muto, S., et al. (2010). Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 70(10), 1127–1133. https://doi.org/10.1002/pros.21147

    Article  CAS  PubMed  Google Scholar 

  529. Kwan, E. M., Spain, L., Anton, A., Gan, C. L., Garrett, L., Chang, D., et al. (2022). Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: The phase 2 ICE-PAC clinical trial. European Urology, 81(3), 253–262.

    Article  CAS  PubMed  Google Scholar 

  530. Bailly, C. (2019). Irinotecan: 25 years of cancer treatment. Pharmacological Research, 148, 104398.

    Article  CAS  PubMed  Google Scholar 

  531. Kciuk, M., Marciniak, B., & Kontek, R. (2020). Irinotecan—Still an important player in cancer chemotherapy: A comprehensive overview. International Journal of Molecular Sciences, 21(14), 4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  532. Noda, K., Nishiwaki, Y., Kawahara, M., Negoro, S., Sugiura, T., Yokoyama, A., et al. (2002). Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. New England Journal of Medicine, 346(2), 85–91.

    Article  CAS  PubMed  Google Scholar 

  533. Fuchs, C., Mitchell, E. P., & Hoff, P. M. (2006). Irinotecan in the treatment of colorectal cancer. Cancer Treatment Reviews, 32(7), 491–503.

    Article  CAS  PubMed  Google Scholar 

  534. Feldman, E., Kalaycio, M., Weiner, G., Frankel, S., Schulman, P., Schwartzberg, L., et al. (2003). Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia, 17(2), 314–318.

    Article  CAS  PubMed  Google Scholar 

  535. Grillo-López, A. J., White, C. A., Varns, C., Shen, D., Wei, A., McClure, A., et al. Overview of the clinical development of rituximab: First monoclonal antibody approved for the treatment of lymphoma. In Seminars in Oncology, 1999 (Vol. 26, pp. 66–73, Vol. 5 Suppl 14)

  536. Seiden, M., Burris, H., Matulonis, U., Hall, J., Armstrong, D., Speyer, J., et al. (2007). A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecologic Oncology, 104(3), 727–731.

    Article  CAS  PubMed  Google Scholar 

  537. Smaletz, O., Ismael, G., Estevez-Diz, M. D. P., Nascimento, I. L., de Morais, A. L. G., Cunha-Junior, G. F., et al. (2021). Phase II consolidation trial with anti-Lewis-Y monoclonal antibody (hu3S193) in platinum-sensitive ovarian cancer after a second remission. International Journal of Gynecologic Cancer, 31(4), 62–568. https://doi.org/10.1136/ijgc-2020-002239

    Article  Google Scholar 

  538. Chi, K. N., Gleave, M. E., Fazli, L., Goldenberg, S. L., So, A., Kollmannsberger, C., et al. (2012). A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer. Clinical Cancer Research, 18(12), 3407–3413. https://doi.org/10.1158/1078-0432.CCR-12-0482

    Article  CAS  PubMed  Google Scholar 

  539. Hor, S., Lee, S., Wong, C., Lim, Y., Lim, R., Wang, L., et al. (2008). PXR, CAR and HNF4α genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients. The Pharmacogenomics Journal, 8(2), 139–146.

    Article  CAS  PubMed  Google Scholar 

  540. Chew, S.-C., Lim, J., Singh, O., Chen, X., Tan, E.-H., Lee, E.-J., et al. (2014). Pharmacogenetic effects of regulatory nuclear receptors (PXR, CAR, RXRα and HNF4α) on docetaxel disposition in Chinese nasopharyngeal cancer patients. European Journal of Clinical Pharmacology, 70(2), 155–166.

    Article  CAS  PubMed  Google Scholar 

  541. Deeken, J. F., Cormier, T., Price, D. K., Sissung, T. M., Steinberg, S. M., Tran, K., et al. (2010). A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics Journal, 10(3), 191–199. https://doi.org/10.1038/tpj.2009.57

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the BT/556/NE/U-Excel/2016 grant awarded to Ajaikumar B. Kunnumakkara by the Department of Biotechnology (DBT), Government of India. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this work through the Research Group Program under Grant Number: (R.G.P.2/133/43). Mangala Hegde received funding from Science and Engineering Board (SERB)-National Post-Doctoral Fellowship (NPDF) (PDF/2021/004053). Aviral Kumar acknowledge the Prime Minsiter’s Research Fellowship (PMRF) program, Ministry of Education (MoE), Govt. of India for providing fellwoship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gautam Sethi or Ajaikumar B. Kunnumakkara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, M., Girisa, S., Naliyadhara, N. et al. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 42, 765–822 (2023). https://doi.org/10.1007/s10555-022-10068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10068-w

Keywords

Navigation