Skip to main content

Advertisement

Log in

Stress, inflammation, and eicosanoids: an emerging perspective

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Clinical and experimental studies support the notion that adrenergic stimulation and chronic stress affect inflammation, metabolism, and tumor growth. Eicosanoids are also known to heavily influence inflammation while regulating certain stress responses. However, additional work is needed to understand the full extent of interactions between the stress-related pathways and eicosanoids. Here, we review the potential influences that stress, inflammation, and metabolic pathways have on each other, in the context of eicosanoids. Understanding the intricacies of such interactions could provide insights on how systemic metabolic effects mediated by the stress pathways can be translated into therapies for cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., Stefanek, M., & Sood, A. K. (2006). The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Reviews. Cancer, 6(3), 240–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews. Immunology, 5(3), 243–251.

    Article  PubMed  CAS  Google Scholar 

  3. Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annual Review of Physiology, 67, 259–284.

    Article  PubMed  CAS  Google Scholar 

  4. McEwen, B. S. (2002). Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiology of Aging, 23(5), 921–939.

    Article  PubMed  CAS  Google Scholar 

  5. Penninx, B. W., et al. (1998). Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute, 90(24), 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  6. Duijts, S. F., Zeegers, M. P., & Borne, B. V. (2003). The association between stressful life events and breast cancer risk: a meta-analysis. International Journal of Cancer, 107(6), 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  7. Bleiker, E. M., et al. (2008). Personality factors and breast cancer risk: a 13-year follow-up. Journal of the National Cancer Institute, 100(3), 213–218.

    Article  PubMed  Google Scholar 

  8. Price, M. A., Tennant, C. C., Smith, R. C., Butow, P. N., Kennedy, S. J., Kossoff, M. B., & Dunn, S. M. (2001). The role of psychosocial factors in the development of breast carcinoma: part I. The cancer prone personality. Cancer, 91(4), 679–685.

    Article  PubMed  CAS  Google Scholar 

  9. Chida, Y., Hamer, M., Wardle, J., & Steptoe, A. (2008). Do stress-related psychosocial factors contribute to cancer incidence and survival? Nature Clinical Practice. Oncology, 5(8), 466–475.

    Article  PubMed  Google Scholar 

  10. Selye, H. (1998). A syndrome produced by diverse nocuous agents. 1936. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(2), 230–231.

    Article  PubMed  CAS  Google Scholar 

  11. Reiche, E. M., Nunes, S. O., & Morimoto, H. K. (2004). Stress, depression, the immune system, and cancer. The Lancet Oncology, 5(10), 617–625.

    Article  PubMed  CAS  Google Scholar 

  12. Cole, S. W., Nagaraja, A. S., Lutgendorf, S. K., Green, P. A., & Sood, A. K. (2015). Sympathetic nervous system regulation of the tumour microenvironment. Nature Reviews. Cancer, 15(9), 563–572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hassan, S., Karpova, Y., Baiz, D., Yancey, D., Pullikuth, A., Flores, A., Register, T., Cline, J. M., D’Agostino R Jr, Danial, N., Datta, S. R., & Kulik, G. (2013). Behavioral stress accelerates prostate cancer development in mice. The Journal of Clinical Investigation, 123(2), 874–886.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Kruk, J., & Aboul-Enein, H. Y. (2004). Psychological stress and the risk of breast cancer: a case-control study. Cancer Detection and Prevention, 28(6), 399–408.

    Article  PubMed  Google Scholar 

  15. Lutgendorf, S. K., de Geest, K., Bender, D., Ahmed, A., Goodheart, M. J., Dahmoush, L., Zimmerman, M. B., Penedo, F. J., Lucci III, J. A., Ganjei-Azar, P., Thaker, P. H., Mendez, L., Lubaroff, D. M., Slavich, G. M., Cole, S. W., & Sood, A. K. (2012). Social influences on clinical outcomes of patients with ovarian cancer. Journal of Clinical Oncology, 30(23), 2885–2890.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramirez, A. J., Craig, T. K., Watson, J. P., Fentiman, I. S., North, W. R., & Rubens, R. D. (1989). Stress and relapse of breast cancer. BMJ, 298(6669), 291–293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Thaker, P. H., Han, L. Y., Kamat, A. A., Arevalo, J. M., Takahashi, R., Lu, C., Jennings, N. B., Armaiz-Pena, G., Bankson, J. A., Ravoori, M., Merritt, W. M., Lin, Y. G., Mangala, L. S., Kim, T. J., Coleman, R. L., Landen, C. N., Li, Y., Felix, E., Sanguino, A. M., Newman, R. A., Lloyd, M., Gershenson, D. M., Kundra, V., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W., & Sood, A. K. (2006). Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Medicine, 12(8), 939–944.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, H. M., Liao, Z. X., Komaki, R., Welsh, J. W., O’Reilly, M. S., Chang, J. Y., Zhuang, Y., Levy, L. B., Lu, C., & Gomez, D. R. (2013). Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Annals of Oncology, 24(5), 1312–1319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nagaraja, A. S., Dorniak, P. L., Sadaoui, N. C., Kang, Y., Lin, T., Armaiz-Pena, G., Wu, S. Y., Rupaimoole, R., Allen, J. K., Gharpure, K. M., Pradeep, S., Zand, B., Previs, R. A., Hansen, J. M., Ivan, C., Rodriguez-Aguayo, C., Yang, P., Lopez-Berestein, G., Lutgendorf, S. K., Cole, S. W., & Sood, A. K. (2016). Sustained adrenergic signaling leads to increased metastasis in ovarian cancer via increased PGE2 synthesis. Oncogene, 35(18), 2390–2397.

    Article  PubMed  CAS  Google Scholar 

  20. Sanders, V. M., & Straub, R. H. (2002). Norepinephrine, the beta-adrenergic receptor, and immunity. Brain, Behavior, and Immunity, 16(4), 290–332.

    Article  PubMed  CAS  Google Scholar 

  21. Jean, D., & Bar-Eli, M. (2000). Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Molecular and Cellular Biochemistry, 212(1–2), 19–28.

    Article  PubMed  CAS  Google Scholar 

  22. Sood, A. K., Bhatty, R., Kamat, A. A., Landen, C. N., Han, L., Thaker, P. H., Li, Y., Gershenson, D. M., Lutgendorf, S., & Cole, S. W. (2006). Stress hormone-mediated invasion of ovarian cancer cells. Clinical Cancer Research, 12(2), 369–375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang, E. V., Sood, A. K., Chen, M., Li, Y., Eubank, T. D., Marsh, C. B., Jewell, S., Flavahan, N. A., Morrison, C., Yeh, P. E., Lemeshow, S., & Glaser, R. (2006). Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Research, 66(21), 10357–10364.

    Article  PubMed  CAS  Google Scholar 

  24. Landen Jr., C. N., et al. (2007). Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Research, 67(21), 10389–10396.

    Article  PubMed  CAS  Google Scholar 

  25. Li, W., Yu, C. P., Xia, J. T., Zhang, L., Weng, G. X., Zheng, H. Q., Kong, Q. L., Hu, L. J., Zeng, M. S., Zeng, Y. X., Li, M., Li, J., & Song, L. B. (2009). Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clinical Cancer Research, 15(4), 1393–1399.

    Article  PubMed  CAS  Google Scholar 

  26. Hansen-Petrik, M. B., McEntee, M., Jull, B., Shi, H., Zemel, M. B., & Whelan, J. (2002). Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(min/+) mice. Cancer Research, 62(2), 403–408.

    PubMed  CAS  Google Scholar 

  27. Yan, M., Myung, S. J., Fink, S. P., Lawrence, E., Lutterbaugh, J., Yang, P., Zhou, X., Liu, D., Rerko, R. M., Willis, J., Dawson, D., Tai, H. H., Barnholtz-Sloan, J. S., Newman, R. A., Bertagnolli, M. M., & Markowitz, S. D. (2009). 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9409–9413.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Colby, J. K., et al. (2008). Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia, 10(8), 782–796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lewis, R. A., Austen, K. F., & Soberman, R. J. (1990). Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. The New England Journal of Medicine, 323(10), 645–655.

    Article  PubMed  CAS  Google Scholar 

  31. Agarwal, S., Reddy, G. V., & Reddanna, P. (2009). Eicosanoids in inflammation and cancer: the role of COX-2. Expert Review of Clinical Immunology, 5(2), 145–165.

    Article  PubMed  CAS  Google Scholar 

  32. Harizi, H., Corcuff, J. B., & Gualde, N. (2008). Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends in Molecular Medicine, 14(10), 461–469.

    Article  PubMed  CAS  Google Scholar 

  33. Ruder, E. H., Laiyemo, A. O., Graubard, B. I., Hollenbeck, A. R., Schatzkin, A., & Cross, A. J. (2011). Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. The American Journal of Gastroenterology, 106(7), 1340–1350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kuo, C. N., Pan, J. J., Huang, Y. W., Tsai, H. J., & Chang, W. C. (2018). Association between nonsteroidal anti-inflammatory drugs and colorectal cancer: a population-based case-control study. Cancer Epidemiology, Biomarkers & Prevention.

  35. Harris, R. E. (2009). Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology, 17(2), 55–67.

    Article  PubMed  CAS  Google Scholar 

  36. Gurpinar, E., Grizzle, W. E., & Piazza, G. A. (2014). NSAIDs inhibit tumorigenesis, but how? Clinical Cancer Research, 20(5), 1104–1113.

    Article  PubMed  CAS  Google Scholar 

  37. Narumiya, S. (2007). Physiology and pathophysiology of prostanoid receptors. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 83(9–10), 296–319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Brown, J. R., & DuBois, R. N. (2005). COX-2: a molecular target for colorectal cancer prevention. Journal of Clinical Oncology, 23(12), 2840–2855.

    Article  PubMed  CAS  Google Scholar 

  39. Sebaldt, R. J., Sheller, J. R., Oates, J. A., Roberts, L. J., & FitzGerald, G. A. (1990). Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. Proceedings of the National Academy of Sciences of the United States of America, 87(18), 6974–6978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Masferrer, J. L., Seibert, K., Zweifel, B., & Needleman, P. (1992). Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 3917–3921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brenner, T., Boneh, A., Shohami, E., Abramsky, O., & Weidenfeld, J. (1992). Glucocorticoid regulation of eicosanoid production by glial cells under basal and stimulated conditions. Journal of Neuroimmunology, 40(2–3), 273–279.

    Article  PubMed  CAS  Google Scholar 

  42. Fu, J. Y., Masferrer, J. L., Seibert, K., Raz, A., & Needleman, P. (1990). The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. The Journal of Biological Chemistry, 265(28), 16737–16740.

    PubMed  CAS  Google Scholar 

  43. Chatzopoulou, A., Heijmans, J. P. M., Burgerhout, E., Oskam, N., Spaink, H. P., Meijer, A. H., & Schaaf, M. J. M. (2016). Glucocorticoid-induced attenuation of the inflammatory response in zebrafish. Endocrinology, 157(7), 2772–2784.

    Article  PubMed  CAS  Google Scholar 

  44. Tahir, A., Bileck, A., Muqaku, B., Niederstaetter, L., Kreutz, D., Mayer, R. L., Wolrab, D., Meier, S. M., Slany, A., & Gerner, C. (2017). Combined proteome and eicosanoid profiling approach for revealing implications of human fibroblasts in chronic inflammation. Analytical Chemistry, 89(3), 1945–1954.

    Article  PubMed  CAS  Google Scholar 

  45. Furuyashiki, T., & Narumiya, S. (2011). Stress responses: the contribution of prostaglandin E(2) and its receptors. Nature Reviews. Endocrinology, 7(3), 163–175.

    Article  PubMed  CAS  Google Scholar 

  46. Elander, L., Engstrom, L., Ruud, J., Mackerlova, L., Jakobsson, P. J., Engblom, D., Nilsberth, C., & Blomqvist, A. (2009). Inducible prostaglandin E2 synthesis interacts in a temporally supplementary sequence with constitutive prostaglandin-synthesizing enzymes in creating the hypothalamic-pituitary-adrenal axis response to immune challenge. The Journal of Neuroscience, 29(5), 1404–1413.

    Article  PubMed  CAS  Google Scholar 

  47. Elmquist, J. K., Breder, C. D., Sherin, J. E., Scammell, T. E., Hickey, W. F., Dewitt, D., & Saper, C. B. (1997). Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. The Journal of Comparative Neurology, 381(2), 119–129.

    Article  PubMed  CAS  Google Scholar 

  48. Elander, L., Ruud, J., Korotkova, M., Jakobsson, P. J., & Blomqvist, A. (2010). Cyclooxygenase-1 mediates the immediate corticosterone response to peripheral immune challenge induced by lipopolysaccharide. Neuroscience Letters, 470(1), 10–12.

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Bueno, B., Serrats, J., & Sawchenko, P. E. (2009). Cerebrovascular cyclooxygenase-1 expression, regulation, and role in hypothalamic-pituitary-adrenal axis activation by inflammatory stimuli. The Journal of Neuroscience, 29(41), 12970–12981.

    Article  PubMed  CAS  Google Scholar 

  50. Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews, 79(1), 1–71.

    Article  PubMed  CAS  Google Scholar 

  51. Matsuoka, Y., Furuyashiki, T., Bito, H., Ushikubi, F., Tanaka, Y., Kobayashi, T., Muro, S., Satoh, N., Kayahara, T., Higashi, M., Mizoguchi, A., Shichi, H., Fukuda, Y., Nakao, K., & Narumiya, S. (2003). Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4132–4137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ericsson, A., Arias, C., & Sawchenko, P. E. (1997). Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. The Journal of Neuroscience, 17(18), 7166–7179.

    Article  PubMed  CAS  Google Scholar 

  53. Matsuoka, Y., Furuyashiki, T., Yamada, K., Nagai, T., Bito, H., Tanaka, Y., Kitaoka, S., Ushikubi, F., Nabeshima, T., & Narumiya, S. (2005). Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 16066–16071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Garcia-Bueno, B., et al. (2008). Stress mediators regulate brain prostaglandin synthesis and peroxisome proliferator-activated receptor-gamma activation after stress in rats. Endocrinology, 149(4), 1969–1978.

    Article  PubMed  CAS  Google Scholar 

  55. Yamagata, K., Andreasson, K. I., Kaufmann, W. E., Barnes, C. A., & Worley, P. F. (1993). Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron, 11(2), 371–386.

    Article  PubMed  CAS  Google Scholar 

  56. McLemore, T. L., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.

    PubMed  CAS  Google Scholar 

  57. Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.

    PubMed  CAS  Google Scholar 

  58. Wang, D., & Dubois, R. N. (2004). Cyclooxygenase-2: a potential target in breast cancer. Seminars in Oncology, 31(1 Suppl 3), 64–73.

    Article  PubMed  CAS  Google Scholar 

  59. Allen, J. K., Armaiz-Pena, G. N., Nagaraja, A. S., Sadaoui, N. C., Ortiz, T., Dood, R., Ozcan, M., Herder, D. M., Haemerrle, M., Gharpure, K. M., Rupaimoole, R., Previs, R., Wu, S. Y., Pradeep, S., Xu, X., Dong Han, H., Zand, B., Dalton, H. J., Taylor, M., Hu, W., Bottsford-Miller, J., Moreno-Smith, M., Kang, Y., Mangala, L. S., Rodriguez-Aguayo, C., Sehgal, V., Spaeth, E. L., Ram, P. T., Wong, S. T. C., Marini, F. C., Lopez-Berestein, G., Cole, S. W., Lutgendorf, S. K., diBiasi, M., & Sood, A. K. (2018). Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. In Cancer Res (p. canres.1701.2016).

    Google Scholar 

  60. Renz, B. W., et al. (2018). β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell, 33(1), 75–90 e7.

    Article  PubMed  CAS  Google Scholar 

  61. Sloan, E. K., Capitanio, J. P., & Cole, S. W. (2008). Stress-induced remodeling of lymphoid innervation. Brain, Behavior, and Immunity, 22(1), 15–21.

    Article  PubMed  CAS  Google Scholar 

  62. Gosain, A., Jones, S. B., Shankar, R., Gamelli, R. L., & DiPietro, L. A. (2006). Norepinephrine modulates the inflammatory and proliferative phases of wound healing. The Journal of Trauma, 60(4), 736–744.

    Article  PubMed  CAS  Google Scholar 

  63. Sivamani, R. K., Pullar, C. E., Manabat-Hidalgo, C. G., Rocke, D. M., Carlsen, R. C., Greenhalgh, D. G., & Isseroff, R. R. (2009). Stress-mediated increases in systemic and local epinephrine impair skin wound healing: potential new indication for beta blockers. PLoS Medicine, 6(1), e12.

    Article  PubMed  CAS  Google Scholar 

  64. Felten, D. L., et al. (1985). Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of Immunology, 135(2 Suppl), 755s–765s.

    CAS  Google Scholar 

  65. Felten, S. Y., & Olschowka, J. (1987). Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp. Journal of Neuroscience Research, 18(1), 37–48.

    Article  PubMed  CAS  Google Scholar 

  66. Maestroni, G. J., & Mazzola, P. (2003). Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. Journal of Neuroimmunology, 144(1–2), 91–99.

    Article  PubMed  CAS  Google Scholar 

  67. Saint-Mezard, P., Chavagnac, C., Bosset, S., Ionescu, M., Peyron, E., Kaiserlian, D., Nicolas, J. F., & Berard, F. (2003). Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo. Journal of Immunology, 171(8), 4073–4080.

    Article  CAS  Google Scholar 

  68. Seiffert, K., Hosoi, J., Torii, H., Ozawa, H., Ding, W., Campton, K., Wagner, J. A., & Granstein, R. D. (2002). Catecholamines inhibit the antigen-presenting capability of epidermal Langerhans cells. Journal of Immunology, 168(12), 6128–6135.

    Article  CAS  Google Scholar 

  69. Manni, M., Granstein, R. D., & Maestroni, G. (2011). β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine, 55(3), 380–386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yanagawa, Y., Matsumoto, M., & Togashi, H. (2011). Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain, Behavior, and Immunity, 25(7), 1427–1433.

    Article  PubMed  CAS  Google Scholar 

  71. Alaniz, R. C., Thomas, S. A., Perez-Melgosa, M., Mueller, K., Farr, A. G., Palmiter, R. D., & Wilson, C. B. (1999). Dopamine beta-hydroxylase deficiency impairs cellular immunity. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2274–2278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Swanson, M. A., Lee, W. T., & Sanders, V. M. (2001). IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. Journal of Immunology, 166(1), 232–240.

    Article  CAS  Google Scholar 

  73. Guereschi, M. G., Araujo, L. P., Maricato, J. T., Takenaka, M. C., Nascimento, V. M., Vivanco, B. C., Reis, V. O., Keller, A. C., Brum, P. C., & Basso, A. S. (2013). Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. European Journal of Immunology, 43(4), 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  74. Vida, G., et al. (2011). β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. The FASEB Journal, 25(12), 4476–4485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Benschop, R. J., Jacobs, R., Sommer, B., Schürmeyer, T. H., Raab, J. R., Schmidt, R. E., & Schedlowski, M. (1996). Modulation of the immunologic response to acute stress in humans by beta-blockade or benzodiazepines. The FASEB Journal, 10(4), 517–524.

    Article  PubMed  CAS  Google Scholar 

  76. Mathews, P. M., et al. (1983). Enhancement of natural cytotoxicity by beta-endorphin. Journal of Immunology, 130(4), 1658–1662.

    CAS  Google Scholar 

  77. Deng, J., Muthu, K., Gamelli, R., Shankar, R., & Jones, S. B. (2004). Adrenergic modulation of splenic macrophage cytokine release in polymicrobial sepsis. American Journal of Physiology. Cell Physiology, 287(3), C730–C736.

    Article  PubMed  CAS  Google Scholar 

  78. Elenkov, I. J., et al. (1996). Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proceedings of the Association of American Physicians, 108(5), 374–381.

    PubMed  CAS  Google Scholar 

  79. Hetier, E., Ayala, J., Bousseau, A., & Prochiantz, A. (1991). Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Experimental Brain Research, 86(2), 407–413.

    Article  PubMed  CAS  Google Scholar 

  80. Panina-Bordignon, P., Mazzeo, D., Lucia, P. D., D’Ambrosio, D., Lang, R., Fabbri, L., Self, C., & Sinigaglia, F. (1997). Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. The Journal of Clinical Investigation, 100(6), 1513–1519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Heijnen, C. J., van der Voort, C. R., Wulffraat, N., van der Net, J., Kuis, W., & Kavelaars, A. (1996). Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. Journal of Neuroimmunology, 71(1–2), 223–226.

    Article  PubMed  CAS  Google Scholar 

  82. Spengler, R. N., et al. (1990). Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. Journal of Immunology, 145(5), 1430–1434.

    CAS  Google Scholar 

  83. Szelenyi, J., Kiss, J. P., & Vizi, E. S. (2000). Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. Journal of Neuroimmunology, 103(1), 34–40.

    Article  PubMed  CAS  Google Scholar 

  84. Madden, K. S., Szpunar, M. J., & Brown, E. B. (2011). Beta-Adrenergic receptors (beta-AR) regulate VEGF and IL-6 production by divergent pathways in high beta-AR-expressing breast cancer cell lines. Breast Cancer Research and Treatment, 130(3), 747–758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sloan, E. K., Priceman, S. J., Cox, B. F., Yu, S., Pimentel, M. A., Tangkanangnukul, V., Arevalo, J. M. G., Morizono, K., Karanikolas, B. D. W., Wu, L., Sood, A. K., & Cole, S. W. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Research, 70(18), 7042–7052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Waight, J. D., Netherby, C., Hensen, M. L., Miller, A., Hu, Q., Liu, S., Bogner, P. N., Farren, M. R., Lee, K. P., Liu, K., & Abrams, S. I. (2013). Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. The Journal of Clinical Investigation, 123(10), 4464–4478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ostrand-Rosenberg, S., Sinha, P., Beury, D. W., & Clements, V. K. (2012). Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Seminars in Cancer Biology, 22(4), 275–281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jin, J., Wang, X., Wang, Q., Guo, X., Cao, J., Zhang, X., Zhu, T., Zhang, D., Wang, W., Wang, J., Shen, B., Gao, X., Shi, Y., & Zhang, J. (2013). Chronic psychological stress induces the accumulation of myeloid-derived suppressor cells in mice. PLoS One, 8(9), e74497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ben-Eliyahu, S., et al. (1999). Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. International Journal of Cancer, 80(6), 880–888.

    Article  PubMed  CAS  Google Scholar 

  91. Benish, M., Bartal, I., Goldfarb, Y., Levi, B., Avraham, R., Raz, A., & Ben-Eliyahu, S. (2008). Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Annals of Surgical Oncology, 15(7), 2042–2052.

    Article  PubMed  Google Scholar 

  92. Shaashua, L., Shabat-Simon, M., Haldar, R., Matzner, P., Zmora, O., Shabtai, M., Sharon, E., Allweis, T., Barshack, I., Hayman, L., Arevalo, J., Ma, J., Horowitz, M., Cole, S., & Ben-Eliyahu, S. (2017). Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clinical Cancer Research, 23(16), 4651–4661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Noonan, D. M., de Lerma Barbaro, A., Vannini, N., Mortara, L., & Albini, A. (2008). Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Reviews, 27(1), 31–40.

    Article  PubMed  Google Scholar 

  94. Sheibanie, A. F., Yen, J. H., Khayrullina, T., Emig, F., Zhang, M., Tuma, R., & Ganea, D. (2007). The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23->IL-17 axis. Journal of Immunology, 178(12), 8138–8147.

    Article  CAS  Google Scholar 

  95. Boniface, K., Bak-Jensen, K. S., Li, Y., Blumenschein, W. M., McGeachy, M. J., McClanahan, T. K., McKenzie, B. S., Kastelein, R. A., Cua, D. J., & de Waal Malefyt, R. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., & Dayer, J. M. (2008). Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 112(9), 3696–3703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Prescott, S. M., & Fitzpatrick, F. A. (2000). Cyclooxygenase-2 and carcinogenesis. Biochimica et Biophysica Acta, 1470(2), M69–M78.

    PubMed  CAS  Google Scholar 

  98. Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., Trzaskos, J. M., Evans, J. F., & Taketo, M. M. (1996). Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell, 87(5), 803–809.

    Article  PubMed  CAS  Google Scholar 

  99. Obermajer, N., Wong, J. L., Edwards, R. P., Odunsi, K., Moysich, K., & Kalinski, P. (2012). PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunological Investigations, 41(6–7), 635–657.

    Article  PubMed  CAS  Google Scholar 

  100. Huang, Y., Lichtenberger, L. M., Taylor, M., Bottsford-Miller, J. N., Haemmerle, M., Wagner, M. J., Lyons, Y., Pradeep, S., Hu, W., Previs, R. A., Hansen, J. M., Fang, D., Dorniak, P. L., Filant, J., Dial, E. J., Shen, F., Hatakeyama, H., & Sood, A. K. (2016). Antitumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Molecular Cancer Therapeutics, 15(12), 2894–2904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Brencicova, E., Jagger, A. L., Evans, H. G., Georgouli, M., Laios, A., Attard Montalto, S., Mehra, G., Spencer, J., Ahmed, A. A., Raju-Kankipati, S., Taams, L. S., & Diebold, S. S. (2017). Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One, 12(4), e0175712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y., & Narumiya, S. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nature Medicine, 15(6), 633–640.

    Article  PubMed  CAS  Google Scholar 

  103. Bomalaski, J. S., Dundee, D., Brophy, L., & Clark, M. A. (1990). Leukotriene B4 modulates phospholipid methylation and chemotaxis in human polymorphonuclear leukocytes. Journal of Leukocyte Biology, 47(1), 1–12.

    Article  PubMed  CAS  Google Scholar 

  104. Haribabu, B., Verghese, M. W., Steeber, D. A., Sellars, D. D., Bock, C. B., & Snyderman, R. (2000). Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. The Journal of Experimental Medicine, 192(3), 433–438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Islam, S. A., Thomas, S. Y., Hess, C., Medoff, B. D., Means, T. K., Brander, C., Lilly, C. M., Tager, A. M., & Luster, A. D. (2006). The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood, 107(2), 444–453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Woo, C. H., You, H. J., Cho, S. H., Eom, Y. W., Chun, J. S., Yoo, Y. J., & Kim, J. H. (2002). Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. The Journal of Biological Chemistry, 277(10), 8572–8578.

    Article  PubMed  CAS  Google Scholar 

  107. Henderson Jr., W. R., et al. (1996). The importance of leukotrienes in airway inflammation in a mouse model of asthma. The Journal of Experimental Medicine, 184(4), 1483–1494.

    Article  PubMed  CAS  Google Scholar 

  108. Park, J., Park, S. Y., & Kim, J. H. (2016). Leukotriene B4 receptor-2 contributes to chemoresistance of SK-OV-3 ovarian cancer cells through activation of signal transducer and activator of transcription-3-linked cascade. Biochimica et Biophysica Acta, 1863(2), 236–243.

    Article  PubMed  CAS  Google Scholar 

  109. Wen, Z., Liu, H., Li, M., Li, B., Gao, W., Shao, Q., Fan, B., Zhao, F., Wang, Q., Xie, Q., Yang, Y., Yu, J., & Qu, X. (2015). Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene, 34(10), 1241–1252.

    Article  PubMed  CAS  Google Scholar 

  110. Fruhbeck, G., et al. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology. Endocrinology and Metabolism, 280(6), E827–E847.

    Article  PubMed  CAS  Google Scholar 

  111. Fearon, K. C., Glass, D. J., & Guttridge, D. C. (2012). Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabolism, 16(2), 153–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work is supported, in part, by the National Institutes of Health (CA016672, CA109298, CA193249, UH3TR000943, P50 CA217685, P50 CA083639, R35 CA209904), Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), the Blanton-Davis Ovarian Cancer Research Program, the American Cancer Society Research Professor Award, and the Frank McGraw Memorial Chair in Cancer Research (A.K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood.

Additional information

Sujanitha Umamaheswaran and Santosh K. Dasari are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umamaheswaran, S., Dasari, S.K., Yang, P. et al. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 37, 203–211 (2018). https://doi.org/10.1007/s10555-018-9741-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9741-1

Keywords

Navigation