Skip to main content

Advertisement

Log in

Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models?

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In the era of modern radiation therapy, the compromise between the reductions in deterministic radiation-induced toxicities through highly conformal devices may be impacting the stochastic risk of second malignancies. We reviewed the clinical literature and evolving theoretical models evaluating the impact of intensity-modulated radiation therapy (IMRT) on the risk of second cancers, as a consequence of the increase in volumes of normal tissues receiving low doses. The risk increase (if any) is not as high as theoretical models have predicted in adults. Moreover, the increase in out-of-field radiation doses with IMRT could be counterbalanced by the decrease in volumes receiving high doses. Clinical studies with short follow-up have not corroborated the hypothesis that IMRT would drastically increase the incidence of second cancers. In children, the risk of radiation-induced carcinogenesis increases from low doses and consequently the relative risk of second cancers after IMRT could be higher than in adults, justifying current developments of proton therapy with priority given to this population. Although only longer follow-up will allow a true assessment of the real impact of these modern techniques on radiation-induced carcinogenesis, a comprehensive risk-adapted strategy will help minimize the probability of second cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Suit, H., Goldberg, S., Niemierko, A., Ancukiewicz, M., Hall, E., Goitein, M., et al. (2007). Secondary carcinogenesis in patients treated with radiation: a review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiation Research, 167(1), 12–42. doi:10.1667/RR0527.1.

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J., & Mackillop, W. J. (2001). Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer, 92(1), 172–180.

    Article  CAS  PubMed  Google Scholar 

  3. Berrington de Gonzalez, A., Gilbert, E., Curtis, R., Inskip, P., Kleinerman, R., Morton, L., et al. (2013). Second solid cancers after radiation therapy: a systematic review of the epidemiologic studies of the radiation dose–response relationship. International Journal of Radiation Oncology, Biology, Physics, 86(2), 224–233. doi:10.1016/j.ijrobp.2012.09.001.

    Article  PubMed  Google Scholar 

  4. Kirova, Y. M., De Rycke, Y., Gambotti, L., Pierga, J.-Y., Asselain, B., Fourquet, A., et al. (2008). Second malignancies after breast cancer: the impact of different treatment modalities. British Journal of Cancer, 98(5), 870–874. doi:10.1038/sj.bjc.6604241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chargari, C., & Cosset, J.-M. (2013). The issue of low doses in radiation therapy and impact on radiation-induced secondary malignancies. Bulletin du Cancer, 100(12), 1333–1342. doi:10.1684/bdc.2013.1855.

    PubMed  Google Scholar 

  6. Hall, E. J. (2006). Intensity-modulated radiation therapy, protons, and the risk of second cancers. International Journal of Radiation Oncology, Biology, Physics, 65(1), 1–7. doi:10.1016/j.ijrobp.2006.01.027.

    Article  PubMed  Google Scholar 

  7. Doss, M., Egleston, B. L., & Litwin, S. (2012). Comments on “Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer diseases” (Radiat Res 2012; 177:229–43). Radiation Research, 178(3), 244–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shah, D. J., Sachs, R. K., & Wilson, D. J. (2012). Radiation-induced cancer: a modern view. The British Journal of Radiology, 85(1020), e1166–e1173. doi:10.1259/bjr/25026140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gray, L. H. (1957). Radiobiology and cancer. Nature, 179(4568), 991–994.

    Article  CAS  PubMed  Google Scholar 

  10. Sachs, R. K., & Brenner, D. J. (2005). Solid tumor risks after high doses of ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13040–13045. doi:10.1073/pnas.0506648102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schneider, U., & Kaser-Hotz, B. (2005). Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose–response relationships. Radiation and Environmental Biophysics, 44(3), 235–239. doi:10.1007/s00411-005-0016-1.

    Article  PubMed  Google Scholar 

  12. Followill, D., Geis, P., & Boyer, A. (1997). Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. International Journal of Radiation Oncology, Biology, Physics, 38(3), 667–672.

    Article  CAS  PubMed  Google Scholar 

  13. Hall, E. J., & Wuu, C.-S. (2003). Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology, Biology, Physics, 56(1), 83–88.

    Article  PubMed  Google Scholar 

  14. Kry, S. F., Salehpour, M., Followill, D. S., Stovall, M., Kuban, D. A., White, R. A., et al. (2005). The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 62(4), 1195–1203. doi:10.1016/j.ijrobp.2005.03.053.

    Article  PubMed  Google Scholar 

  15. Rubino, C., de Vathaire, F., Shamsaldin, A., Labbe, M., & Lê, M. G. (2003). Radiation dose, chemotherapy, hormonal treatment and risk of second cancer after breast cancer treatment. British Journal of Cancer, 89(5), 840–846. doi:10.1038/sj.bjc.6601138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doi, K., Mieno, M. N., Shimada, Y., Yonehara, H., & Yoshinaga, S. (2011). Meta-analysis of second cancer risk after radiotherapy among childhood cancer survivors. Radiation Protection Dosimetry, 146(1–3), 263–267. doi:10.1093/rpd/ncr166.

    Article  PubMed  Google Scholar 

  17. Tubiana, M. (2009). Can we reduce the incidence of second primary malignancies occurring after radiotherapy? a critical review. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 91(1), 4–15. doi:10.1016/j.radonc.2008.12.016. discussion 1–3.

    Article  Google Scholar 

  18. Schneider, U., Zwahlen, D., Ross, D., & Kaser-Hotz, B. (2005). Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. International Journal of Radiation Oncology, Biology, Physics, 61(5), 1510–1515. doi:10.1016/j.ijrobp.2004.12.040.

    Article  PubMed  Google Scholar 

  19. Ruben, J. D., Davis, S., Evans, C., Jones, P., Gagliardi, F., Haynes, M., et al. (2008). The effect of intensity-modulated radiotherapy on radiation-induced second malignancies. International Journal of Radiation Oncology, Biology, Physics, 70(5), 1530–1536. doi:10.1016/j.ijrobp.2007.08.046.

    Article  PubMed  Google Scholar 

  20. Berrington de Gonzalez, A., Curtis, R. E., Kry, S. F., Gilbert, E., Lamart, S., Berg, C. D., et al. (2011). Proportion of second cancers attributable to radiotherapy treatment in adults: a cohort study in the US SEER cancer registries. The Lancet Oncology, 12(4), 353–360. doi:10.1016/S1470-2045(11)70061-4.

    Article  PubMed  Google Scholar 

  21. Bhatia, S., Robison, L. L., Oberlin, O., Greenberg, M., Bunin, G., Fossati-Bellani, F., et al. (1996). Breast cancer and other second neoplasms after childhood Hodgkin’s disease. The New England Journal of Medicine, 334(12), 745–751. doi:10.1056/NEJM199603213341201.

    Article  CAS  PubMed  Google Scholar 

  22. Bhatia, S., Yasui, Y., Robison, L. L., Birch, J. M., Bogue, M. K., Diller, L., Late Effects Study Group, et al. (2003). High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the late effects study group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 21(23), 4386–4394. doi:10.1200/JCO.2003.11.059.

    Article  Google Scholar 

  23. Guibout, C., Adjadj, E., Rubino, C., Shamsaldin, A., Grimaud, E., Hawkins, M., et al. (2005). Malignant breast tumors after radiotherapy for a first cancer during childhood. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23(1), 197–204. doi:10.1200/JCO.2005.06.225.

    Article  Google Scholar 

  24. Travis, L. B., Gospodarowicz, M., Curtis, R. E., Clarke, E. A., Andersson, M., Glimelius, B., et al. (2002). Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. Journal of the National Cancer Institute, 94(3), 182–192.

    Article  PubMed  Google Scholar 

  25. Cosset, J. M., Henry-Amar, M., Dietrich, P. Y., Socié, G., Girinsky, T., Hayat, M., et al. (1992). Secondary solid tumors after Hodgkin’s disease radiotherapy; experience at the Gustave Roussy Institute. Bulletin du Cancer, 79(4), 387–388.

    CAS  PubMed  Google Scholar 

  26. Inskip, P. D., Robison, L. L., Stovall, M., Smith, S. A., Hammond, S., Mertens, A. C., et al. (2009). Radiation dose and breast cancer risk in the childhood cancer survivor study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(24), 3901–3907. doi:10.1200/JCO.2008.20.7738.

    Article  Google Scholar 

  27. van Leeuwen, F. E., Klokman, W. J., Stovall, M., Hagenbeek, A., van den Belt-Dusebout, A. W., Noyon, R., et al. (1995). Roles of radiotherapy and smoking in lung cancer following Hodgkin’s disease. Journal of the National Cancer Institute, 87(20), 1530–1537.

    Article  PubMed  Google Scholar 

  28. Travis, L. B., Hill, D. A., Dores, G. M., Gospodarowicz, M., van Leeuwen, F. E., Holowaty, E., et al. (2003). Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA, 290(4), 465–475. doi:10.1001/jama.290.4.465.

    Article  PubMed  Google Scholar 

  29. Dores, G. M., Metayer, C., Curtis, R. E., Lynch, C. F., Clarke, E. A., Glimelius, B., et al. (2002). Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 20(16), 3484–3494.

    Article  Google Scholar 

  30. Gilbert, E. S., Stovall, M., Gospodarowicz, M., Van Leeuwen, F. E., Andersson, M., Glimelius, B., et al. (2003). Lung cancer after treatment for Hodgkin’s disease: focus on radiation effects. Radiation Research, 159(2), 161–173.

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien, M. M., Donaldson, S. S., Balise, R. R., Whittemore, A. S., & Link, M. P. (2010). Second malignant neoplasms in survivors of pediatric Hodgkin’s lymphoma treated with low-dose radiation and chemotherapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(7), 1232–1239. doi:10.1200/JCO.2009.24.8062.

    Article  Google Scholar 

  32. Swerdlow, A. J., Higgins, C. D., Smith, P., Cunningham, D., Hancock, B. W., Horwich, A., et al. (2011). Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29(31), 4096–4104. doi:10.1200/JCO.2011.34.8268.

    Article  CAS  Google Scholar 

  33. Lorigan, P., Radford, J., Howell, A., & Thatcher, N. (2005). Lung cancer after treatment for Hodgkin’s lymphoma: a systematic review. The Lancet Oncology, 6(10), 773–779. doi:10.1016/S1470-2045(05)70387-9.

    Article  PubMed  Google Scholar 

  34. Clarke, M., Collins, R., Darby, S., Davies, C., Elphinstone, P., Evans, E., Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), et al. (2005). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet, 366(9503), 2087–2106. doi:10.1016/S0140-6736(05)67887-7.

    Article  CAS  PubMed  Google Scholar 

  35. Berrington de Gonzalez, A., Curtis, R. E., Gilbert, E., Berg, C. D., Smith, S. A., Stovall, M., et al. (2010). Second solid cancers after radiotherapy for breast cancer in SEER cancer registries. British Journal of Cancer, 102(1), 220–226. doi:10.1038/sj.bjc.6605435.

    Article  CAS  PubMed  Google Scholar 

  36. Meadows, A. T., Friedman, D. L., Neglia, J. P., Mertens, A. C., Donaldson, S. S., Stovall, M., et al. (2009). Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(14), 2356–2362. doi:10.1200/JCO.2008.21.1920.

    Article  Google Scholar 

  37. Henderson, T. O., Whitton, J., Stovall, M., Mertens, A. C., Mitby, P., Friedman, D., et al. (2007). Secondary sarcomas in childhood cancer survivors: a report from the childhood cancer survivor study. Journal of the National Cancer Institute, 99(4), 300–308. doi:10.1093/jnci/djk052.

    Article  PubMed  Google Scholar 

  38. Bassal, M., Mertens, A. C., Taylor, L., Neglia, J. P., Greffe, B. S., Hammond, S., et al. (2006). Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the childhood cancer survivor study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 24(3), 476–483. doi:10.1200/JCO.2005.02.7235.

    Article  Google Scholar 

  39. Kleinerman, R. A. (2006). Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatric Radiology, 36(Suppl 2), 121–125. doi:10.1007/s00247-006-0191-5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kovalchik, S. A., Ronckers, C. M., Veiga, L. H. S., Sigurdson, A. J., Inskip, P. D., de Vathaire, F., et al. (2013). Absolute risk prediction of second primary thyroid cancer among 5-year survivors of childhood cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(1), 119–127. doi:10.1200/JCO.2012.41.8996.

    Article  Google Scholar 

  41. Tukenova, M., Diallo, I., Anderson, H., Hawkins, M., Garwicz, S., Sankila, R., et al. (2012). Second malignant neoplasms in digestive organs after childhood cancer: a cohort-nested case–control study. International Journal of Radiation Oncology, Biology, Physics, 82(3), e383–e390. doi:10.1016/j.ijrobp.2011.05.069.

    Article  PubMed  Google Scholar 

  42. Diallo, I., Haddy, N., Adjadj, E., Samand, A., Quiniou, E., Chavaudra, J., et al. (2009). Frequency distribution of second solid cancer locations in relation to the irradiated volume among 115 patients treated for childhood cancer. International Journal of Radiation Oncology, Biology, Physics, 74(3), 876–883. doi:10.1016/j.ijrobp.2009.01.040.

    Article  PubMed  Google Scholar 

  43. Zwahlen, D. R., Ruben, J. D., Jones, P., Gagliardi, F., Millar, J. L., & Schneider, U. (2009). Effect of intensity-modulated pelvic radiotherapy on second cancer risk in the postoperative treatment of endometrial and cervical cancer. International Journal of Radiation Oncology, Biology, Physics, 74(2), 539–545. doi:10.1016/j.ijrobp.2009.01.051.

    Article  PubMed  Google Scholar 

  44. Schneider, U., Lomax, A., Pemler, P., Besserer, J., Ross, D., Lombriser, N., et al. (2006). The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlentherapie Und Onkologie: Organ Der Deutschen Röntgengesellschaft, 182(11), 647–652. doi:10.1007/s00066-006-1534-8.

    Article  Google Scholar 

  45. Bichay, T., Cao, D., & Orton, C. G. (2008). Point/counterpoint. Helical tomotherapy will ultimately replace linear accelerator based IMRT as the best way to deliver conformal radiotherapy. Medical Physics, 35(5), 1625–1628.

    Article  PubMed  Google Scholar 

  46. National Council on Radiation rotection and Measurements, Bethesda, MD National Council on Radiation Protection and Measurements, Limitation of Exposure to Ionizing Radiation, NCRP Report No. 116.

  47. Ramsey, C., Seibert, R., Mahan, S. L., Desai, D., & Chase, D. (2006). Out-of-field dosimetry measurements for a helical tomotherapy system. Journal of Applied Clinical Medical Physics / American College of Medical Physics, 7(3), 1–11.

    PubMed  Google Scholar 

  48. Shi, C., Peñagarícano, J., & Papanikolaou, N. (2008). Comparison of IMRT treatment plans between linac and helical tomotherapy based on integral dose and inhomogeneity index. Medical Dosimetry: Official Journal of the American Association of Medical Dosimetrists, 33(3), 215–221. doi:10.1016/j.meddos.2007.11.001.

    Article  Google Scholar 

  49. Di Betta, E., Fariselli, L., Bergantin, A., Locatelli, F., Del Vecchio, A., Broggi, S., et al. (2010). Evaluation of the peripheral dose in stereotactic radiotherapy and radiosurgery treatments. Medical Physics, 37(7), 3587–3594.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abo-Madyan, Y., Aziz, M. H., Aly, M. M. O. M., Schneider, F., Sperk, E., Clausen, S., et al. (2014). Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 110(3), 471–476. doi:10.1016/j.radonc.2013.12.002.

    Article  Google Scholar 

  51. Maraldo, M. V., Brodin, N. P., Aznar, M. C., Vogelius, I. R., Munck af Rosenschöld, P., et al. (2013). Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma. Annals of oncology: Official Journal of the European Society for Medical Oncology / ESMO, 24(8), 2113–2118. doi:10.1093/annonc/mdt156.

    Article  CAS  Google Scholar 

  52. Werbrouck, J., Ost, P., Fonteyne, V., De Meerleer, G., De Neve, W., Bogaert, E., et al. (2013). Early biomarkers related to secondary primary cancer risk in radiotherapy treated prostate cancer patients: IMRT versus IMAT. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 107(3), 377–381. doi:10.1016/j.radonc.2013.05.014.

    Article  Google Scholar 

  53. Woo, T. C. S., Pignol, J.-P., Rakovitch, E., Vu, T., Hicks, D., O’Brien, P., et al. (2006). Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation techniques. International Journal of Radiation Oncology, Biology, Physics, 65(1), 52–58. doi:10.1016/j.ijrobp.2005.11.023.

    Article  PubMed  Google Scholar 

  54. Journy, N., Rehel, J.-L., Ducou Le Pointe, H., Lee, C., Brisse, H., Chateil, J.-F., et al. (2015). Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. British Journal of Cancer, 112(1), 185–193. doi:10.1038/bjc.2014.526.

    Article  CAS  PubMed  Google Scholar 

  55. Schneider, U., Sumila, M., & Robotka, J. (2011). Site-specific dose–response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theoretical Biology & Medical Modelling, 8, 27. doi:10.1186/1742-4682-8-27.

    Article  Google Scholar 

  56. Kan, M. W. K., Leung, L. H. T., Wong, W., & Lam, N. (2008). Radiation dose from cone beam computed tomography for image-guided radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 70(1), 272–279. doi:10.1016/j.ijrobp.2007.08.062.

    Article  CAS  PubMed  Google Scholar 

  57. Kim, D. W., Chung, W. K., & Yoon, M. (2013). Imaging doses and secondary cancer risk from kilovoltage cone-beam CT in radiation therapy. Health Physics, 104(5), 499–503. doi:10.1097/HP.0b013e318285c685.

    Article  CAS  PubMed  Google Scholar 

  58. Olivieri, G., Bodycote, J., & Wolff, S. (1984). Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science (New York, N.Y.), 223(4636), 594–597.

    Article  CAS  Google Scholar 

  59. Zhou, H., Suzuki, M., Randers-Pehrson, G., Vannais, D., Chen, G., Trosko, J. E., et al. (2001). Radiation risk to low fluences of alpha particles may be greater than we thought. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14410–14415. doi:10.1073/pnas.251524798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petti, P. L., Chuang, C. F., Smith, V., & Larson, D. A. (2006). Peripheral doses in CyberKnife radiosurgery. Medical Physics, 33(6), 1770–1779.

    Article  PubMed  Google Scholar 

  61. Chuang, C. F., Larson, D. A., Zytkovicz, A., Smith, V., & Petti, P. L. (2008). Peripheral dose measurement for CyberKnife radiosurgery with upgraded linac shielding. Medical Physics, 35(4), 1494–1496.

    Article  CAS  PubMed  Google Scholar 

  62. Hoppe, B. S., Flampouri, S., Su, Z., Morris, C. G., Latif, N., Dang, N. H., et al. (2012). Consolidative involved-node proton therapy for Stage IA-IIIB mediastinal Hodgkin lymphoma: preliminary dosimetric outcomes from a Phase II study. International Journal of Radiation Oncology, Biology, Physics, 83(1), 260–267. doi:10.1016/j.ijrobp.2011.06.1959.

    Article  PubMed  Google Scholar 

  63. Yoon, M., Ahn, S. H., Kim, J., Shin, D. H., Park, S. Y., Lee, S. B., et al. (2010). Radiation-induced cancers from modern radiotherapy techniques: intensity-modulated radiotherapy versus proton therapy. International Journal of Radiation Oncology, Biology, Physics, 77(5), 1477–1485. doi:10.1016/j.ijrobp.2009.07.011.

    Article  PubMed  Google Scholar 

  64. Miralbell, R., Lomax, A., Cella, L., & Schneider, U. (2002). Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. International Journal of Radiation Oncology, Biology, Physics, 54(3), 824–829.

    Article  PubMed  Google Scholar 

  65. Paganetti, H., Athar, B. S., Moteabbed, M., A Adams, J., Schneider, U., & Yock, T. I. (2012). Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field. Physics in Medicine and Biology, 57(19), 6047–6061. doi:10.1088/0031-9155/57/19/6047.

    Article  PubMed  Google Scholar 

  66. Huang, J., Kestin, L. L., Ye, H., Wallace, M., Martinez, A. A., & Vicini, F. A. (2011). Analysis of second malignancies after modern radiotherapy versus prostatectomy for localized prostate cancer. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 98(1), 81–86. doi:10.1016/j.radonc.2010.09.012.

    Article  Google Scholar 

  67. Nieder, A. M., Porter, M. P., & Soloway, M. S. (2008). Radiation therapy for prostate cancer increases subsequent risk of bladder and rectal cancer: a population based cohort study. The Journal of Urology, 180(5), 2005–2009. doi:10.1016/j.juro.2008.07.038. discussion 2009–2010.

    Article  PubMed  Google Scholar 

  68. Zelefsky, M. J., Housman, D. M., Pei, X., Alicikus, Z., Magsanoc, J. M., Dauer, L. T., et al. (2012). Incidence of secondary cancer development after high-dose intensity-modulated radiotherapy and image-guided brachytherapy for the treatment of localized prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 83(3), 953–959. doi:10.1016/j.ijrobp.2011.08.034.

    Article  PubMed  Google Scholar 

  69. Chung, C. S., Yock, T. I., Nelson, K., Xu, Y., Keating, N. L., & Tarbell, N. J. (2013). Incidence of second malignancies among patients treated with proton versus photon radiation. International Journal of Radiation Oncology, Biology, Physics, 87(1), 46–52. doi:10.1016/j.ijrobp.2013.04.030.

    Article  CAS  PubMed  Google Scholar 

  70. Bekelman, J. E., Schultheiss, T., & Berrington De Gonzalez, A. (2013). Subsequent malignancies after photon versus proton radiation therapy. International Journal of Radiation Oncology, Biology, Physics, 87(1), 10–12. doi:10.1016/j.ijrobp.2013.05.016.

    Article  PubMed  Google Scholar 

  71. Cella, L., Conson, M., Pressello, M. C., Molinelli, S., Schneider, U., Donato, V., et al. (2013). Hodgkin’s lymphoma emerging radiation treatment techniques: trade-offs between late radio-induced toxicities and secondary malignant neoplasms. Radiation Oncology (London, England), 8, 22. doi:10.1186/1748-717X-8-22.

    Article  Google Scholar 

  72. Ye, J. C., Yan, W., Christos, P., Nori, D., Chao, K.-S. C., & Ravi, A. (2015). Second cancer, breast cancer, and cardiac mortality in stage T1aN0 breast cancer patients with or without external beam radiation therapy: a national registry study. Clinical Breast Cancer, 15(1), 54–59. doi:10.1016/j.clbc.2014.07.003.

    Article  PubMed  Google Scholar 

  73. Murray, L., Henry, A., Hoskin, P., Siebert, F.-A., Venselaar, J., & PROBATE group of GEC ESTRO. (2014). Second primary cancers after radiation for prostate cancer: a systematic review of the clinical data and impact of treatment technique. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 110(2), 213–228. doi:10.1016/j.radonc.2013.12.012.

    Article  Google Scholar 

  74. Mertens, A. C., Yasui, Y., Neglia, J. P., Potter, J. D., Nesbit, M. E., Ruccione, R., et al. (2001). Late mortality experience in five-year survivors of childhood and adolescent cancer: the childhood cancer survivor study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 19(13), 3163–3172.

    CAS  Google Scholar 

  75. Travis, L. B., Fosså, S. D., Schonfeld, S. J., McMaster, M. L., Lynch, C. F., Storm, H., et al. (2005). Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. Journal of the National Cancer Institute, 97(18), 1354–1365. doi:10.1093/jnci/dji278.

    Article  PubMed  Google Scholar 

  76. Woodward, E., Jessop, M., Glaser, A., & Stark, D. (2011). Late effects in survivors of teenage and young adult cancer: does age matter? Annals of Oncology: Official Journal of the European Society for Medical Oncology / ESMO, 22(12), 2561–2568. doi:10.1093/annonc/mdr044.

    Article  CAS  Google Scholar 

  77. Moteabbed, M., Yock, T. I., & Paganetti, H. (2014). The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Physics in Medicine and Biology, 59(12), 2883–2899. doi:10.1088/0031-9155/59/12/2883.

    Article  PubMed  Google Scholar 

  78. De Bruin, M. L., Sparidans, J., van’t Veer, M. B., Noordijk, E. M., Louwman, M. W. J., Zijlstra, J. M., et al. (2009). Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27(26), 4239–4246. doi:10.1200/JCO.2008.19.9174.

    Article  Google Scholar 

  79. Koh, E.-S., Tran, T. H., Heydarian, M., Sachs, R. K., Tsang, R. W., Brenner, D., et al. (2007). A comparison of mantle versus involved-field radiotherapy for Hodgkin’s lymphoma: reduction in normal tissue dose and second cancer risk. Radiation Oncology (London, England), 2, 13. doi:10.1186/1748-717X-2-13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Pascale Pons for her assistance in providing illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Magne.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chargari, C., Goodman, K.A., Diallo, I. et al. Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models?. Cancer Metastasis Rev 35, 277–288 (2016). https://doi.org/10.1007/s10555-016-9616-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9616-2

Keywords

Navigation