Skip to main content

Advertisement

Log in

Targeting roles of inflammatory microenvironment in lung cancer and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Inflammatory cells and mediators are essential components in tumor microenvironment and play decisive roles in the initiation, proliferation, survival, promotion, invasion, or metastasis of lung cancer. Clinical and epidemiologic studies suggested a strong association between inflammation and lung cancer and an influence of immune surveillances and tumor responses to chemotherapeutic drugs, although roles of inflammation in lung cancer remain unclear. The present review outlined roles of inflammation in lung cancer, with particular focus on inflammatory components, types, biomarkers, or principal mechanisms by which the inflammation contributes to the development of lung cancer. The cancer-associated inflammatory cells (CICs) should be furthermore defined and include cancer-specific and interacted cells with inflammatory or inflammation-like characteristics, e.g., innate or adaptive immune cells and cancer tissue cells. We also discuss targeting potentials of inflammation in the prevention and treatment of lung cancer. The diversity of cancer-related inflammatory microenvironment is instrumental to design novel therapeutic approaches for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.

    CAS  PubMed  Google Scholar 

  2. Kruse, J. L., & Strouse, T. B. (2015). Sick and tired: mood, fatigue, and inflammation in cancer. Current Psychiatry Reports, 17(3), 555.

    PubMed  Google Scholar 

  3. Balkwill, F. R., & Mantovani, A. (2012). Cancer-related inflammation: common themes and therapeutic opportunities. Seminars in Cancer Biology, 22(1), 33–40.

    CAS  PubMed  Google Scholar 

  4. Bremnes, R. M., Al-Shibli, K., Donnem, T., Sirera, R., Al-Saad, S., Andersen, S., et al. (2011). The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. Journal of Thoracic Oncology, 6(4), 824–833.

    PubMed  Google Scholar 

  5. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    CAS  PubMed  Google Scholar 

  6. Araujo, A., Ribeiro, R., Azevedo, I., Coelho, A., Soares, M., Sousa, B., et al. (2007). Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer—a review of the literature. The Oncologist, 12(2), 201–210.

    CAS  PubMed  Google Scholar 

  7. Wu, K., House, L., Liu, W., & Cho, W. C. (2012). Personalized targeted therapy for lung cancer. International Journal of Molecular Sciences, 13(9), 11471–11496.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Ferlay, J., Parkin, D. M., & Steliarova-Foucher, E. (2010). Estimates of cancer incidence and mortality in Europe in 2008. European Journal of Cancer, 46(4), 765–781.

    CAS  PubMed  Google Scholar 

  9. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87–108.

    Google Scholar 

  10. Xu, Y., Zhang, J., Han, J., Pan, X., Cao, Y., Guo, H., et al. (2012). Curcumin inhibits tumor proliferation induced by neutrophil elastase through the upregulation of alpha1-antitrypsin in lung cancer. Molecular Oncology, 6(4), 405–417.

    CAS  PubMed  Google Scholar 

  11. Engels, E. A. (2008). Inflammation in the development of lung cancer: epidemiological evidence. Expert Review of Anticancer Therapy, 8(4), 605–615.

    CAS  PubMed  Google Scholar 

  12. de-Torres, J. P., Wilson, D. O., Sanchez-Salcedo, P., Weissfeld, J. L., Berto, J., Campo, A., et al. (2015). Lung cancer in patients with chronic obstructive pulmonary disease. Development and validation of the COPD Lung Cancer Screening Score. American Journal of Respiratory and Critical Care Medicine, 191(3), 285–291.

    PubMed  Google Scholar 

  13. Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., & Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 320(5876), 674–677.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Barbieri, S. S., & Weksler, B. B. (2007). Tobacco smoke cooperates with interleukin-1beta to alter beta-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo. The FASEB Journal, 21(8), 1831–1843.

    CAS  PubMed  Google Scholar 

  15. de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6(1), 24–37.

    PubMed  Google Scholar 

  16. Zhang, M., He, Y., Sun, X., Li, Q., Wang, W., Zhao, A., et al. (2014). A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. Journal of Ovarian Research, 7, 19.

    PubMed Central  PubMed  Google Scholar 

  17. Schioppa, T., Moore, R., Thompson, R. G., Rosser, E. C., Kulbe, H., Nedospasov, S., et al. (2011). B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10662–10667.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17(2), 121–134.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bygd, H. C., Forsmark, K. D., & Bratlie, K. M. (2014). The significance of macrophage phenotype in cancer and biomaterials. Clinical and Translational Medicine, 3, 62.

    Google Scholar 

  21. Barriere, G., Fici, P., Gallerani, G., Fabbri, F., & Rigaud, M. (2015). Epithelial mesenchymal transition: a double-edged sword. Clinical and Translational Medicine, 4, 14.

    PubMed Central  PubMed  Google Scholar 

  22. Kraman, M., Bambrough, P. J., Arnold, J. N., Roberts, E. W., Magiera, L., Jones, J. O., et al. (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science, 330(6005), 827–830.

    CAS  PubMed  Google Scholar 

  23. Luo, H., Tu, G., Liu, Z., & Liu, M. (2015). Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Letters, 361(2), 155–163.

    PubMed  Google Scholar 

  24. Wermuth, P. J., & Jimenez, S. A. (2015). The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and Translational Medicine, 4, 2.

    PubMed Central  PubMed  Google Scholar 

  25. Lin, G. N., Peng, J. W., Liu, P. P., Liu, D. Y., Xiao, J. J., & Chen, X. Q. (2014). Elevated neutrophil-to-lymphocyte ratio predicts poor outcome in patients with advanced non-small-cell lung cancer receiving first-line gefitinib or erlotinib treatment. Asia-Pacific Journal of Clinical Oncology. doi:10.1111/ajco.12273.

  26. Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Research, 71(7), 2411–2416.

    CAS  PubMed  Google Scholar 

  27. Pandey, J. P. (2011). Prognostic immune markers in non-small cell lung cancer—letter. Clinical Cancer Research, 17(24), 7835–7836.

    CAS  PubMed  Google Scholar 

  28. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S., & Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 464(7286), 302–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhao, P., Bu, X., Wei, X., Sun, W., Xie, X., Li, C., et al. (2015). Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. International Immunopharmacology, 25(2), 450–456.

    CAS  PubMed  Google Scholar 

  30. Dyduch, G., Kaczmarczyk, K., & Okon, K. (2012). Mast cells and cancer: enemies or allies? Polish Journal of Pathology, 63(1), 1–7.

    CAS  PubMed  Google Scholar 

  31. Tomassetti, S., Gurioli, C., Ryu, J. H., Decker, P. A., Ravaglia, C., Tantalocco, P., et al. (2015). The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest, 147(1), 157–164.

    PubMed  Google Scholar 

  32. Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117(5), 1175–1183.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nature Reviews Immunology, 3(9), 745–756.

    CAS  PubMed  Google Scholar 

  34. Gregorc, V., De Braud, F. G., De Pas, T. M., Scalamogna, R., Citterio, G., Milani, A., et al. (2011). Phase I study of NGR-hTNF, a selective vascular targeting agent, in combination with cisplatin in refractory solid tumors. Clinical Cancer Research, 17(7), 1964–1972.

    CAS  PubMed  Google Scholar 

  35. Kim, V., Rogers, T. J., & Criner, G. J. (2008). New concepts in the pathobiology of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 5(4), 478–485.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Neuzillet, C., Tijeras-Raballand, A., Cohen, R., Cros, J., Faivre, S., Raymond, E., et al. (2015). Targeting the TGFbeta pathway for cancer therapy. Pharmacology and Therapeutics, 147, 22–31.

    CAS  PubMed  Google Scholar 

  37. O’Connor, J. W., & Gomez, E. W. (2014). Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clinical and Translational Medicine, 3, 23.

    PubMed Central  PubMed  Google Scholar 

  38. Hasan, M., Neumann, B., Haupeltshofer, S., Stahlke, S., Claudio Fantini, M., Angstwurm, K., et al. (2015). Activation of TGF-beta-induced non-Smad signaling pathways during Th17 differentiation. Immunology and Cell Biology. doi:10.1038/icb.2015.21.

  39. Heerboth, S., Housman, G., Leary, M., Longacre, M., Byler, S., Lapinska, K., Willbanks, A., & Sarkar, S. (2015). EMT and tumor metastasis. Clinical and Translational Medicine, 4, 6.

    PubMed Central  PubMed  Google Scholar 

  40. Risolino, M., Mandia, N., Iavarone, F., Dardaei, L., Longobardi, E., Fernandez, S., et al. (2014). Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-beta-SMAD3 pathway in non-small cell lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 111(36), 3775–3784.

    Google Scholar 

  41. Ochoa, C. E., Mirabolfathinejad, S. G., Ruiz, V. A., Evans, S. E., Gagea, M., Evans, C. M., et al. (2011). Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis. Cancer Prevention Research (Philadelphia, Pa.), 4(1), 51–64.

    CAS  Google Scholar 

  42. Naugler, W. E., & Karin, M. (2008). The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends in Molecular Medicine, 14(3), 109–119.

    CAS  PubMed  Google Scholar 

  43. Uskudar Teke, H., Gunduz, E., Akay, O. M., Bal, C., & Gulbas, Z. (2015). Are the high serum interleukin-6 and vascular endothelial growth factor levels useful prognostic markers in aggressive non-Hodgkin lymphoma patients? Turkish Journal of Haematology, 32(1), 21–28.

    PubMed  Google Scholar 

  44. Song, L., Rawal, B., Nemeth, J. A., & Haura, E. B. (2011). JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Molecular Cancer Therapeutics, 10(3), 481–494.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., et al. (2010). TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15535–15540.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Frantzi, M., Bhat, A., & Latosinska, A. (2014). Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clinical and Translational Medicine, 3, 7.

    PubMed Central  PubMed  Google Scholar 

  47. Colasante, A., Mascetra, N., Brunetti, M., Lattanzio, G., Diodoro, M., Caltagirone, S., et al. (1997). Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small-cell lung tumors. American Journal of Respiratory and Critical Care Medicine, 156(3 Pt 1), 968–973.

    CAS  PubMed  Google Scholar 

  48. Swindell, W. R., Sarkar, M. K., Stuart, P. E., Voorhees, J. J., Elder, J. T., Johnston, A., & Gudjonsson, J. E. (2015). Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clinical and Translational Medicine, 4, 13.

    PubMed Central  PubMed  Google Scholar 

  49. Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.

    CAS  PubMed  Google Scholar 

  50. Camnitz, W., Burdick, M. D., Strieter, R. M., Mehrad, B., & Keeley, E. C. (2012). Dose-dependent effect of statin therapy on circulating CXCL12 levels in patients with hyperlipidemia. Clinical and Translational Medicine, 1, 23.

    PubMed Central  PubMed  Google Scholar 

  51. Burger, J. A., & Stewart, D. J. (2009). CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opinion on Investigational Drugs, 18(4), 481–490.

    CAS  PubMed  Google Scholar 

  52. Pfeiffer, M., Hartmann, T. N., Leick, M., Catusse, J., Schmitt-Graeff, A., & Burger, M. (2009). Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. British Journal of Cancer, 100(12), 1949–1956.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Minamiya, Y., Saito, H., Takahashi, N., Ito, M., Imai, K., Ono, T., et al. (2010). Expression of the chemokine receptor CXCR4 correlates with a favorable prognosis in patients with adenocarcinoma of the lung. Lung Cancer, 68(3), 466–471.

    PubMed  Google Scholar 

  54. Facciabene, A., Peng, X., Hagemann, I. S., Balint, K., Barchetti, A., Wang, L. P., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 475(7355), 226–230.

    CAS  PubMed  Google Scholar 

  55. Danilova, E., Skrindo, I., Gran, E., Hales, B. J., Smith, W. A., Jahnsen, J., Johansen, F. E., Jahnsen, F. L., & Baekkevold, E. S. (2015). A role for CCL28-CCR3 in T-cell homing to the human upper airway mucosa. Mucosal Immunology, 8(1), 107–114.

    CAS  PubMed  Google Scholar 

  56. Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., et al. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475(7355), 222–225.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Targosz, A., Brzozowski, T., Pierzchalski, P., Szczyrk, U., Ptak-Belowska, A., Konturek, S. J., et al. (2012). Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflammation Research, 61(9), 955–966.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15(9), 1016–1022.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Hessol, N. A., Martinez-Maza, O., Levine, A. M., Morris, A., Margolick, J. B., Cohen, M. H., et al. (2015). Lung cancer incidence and survival among HIV-infected and uninfected women and men. AIDS. PMID: 25888645

  60. Cimato, T. R., & Palka, B. A. (2014). Fractalkine (CX3CL1), GM-CSF and VEGF-a levels are reduced by statins in adult patients. Clinical and Translational Medicine, 3, 14.

    PubMed Central  PubMed  Google Scholar 

  61. Graves, C. A., Abboodi, F. F., Tomar, S., Wells, J., & Pirisi, L. (2014). The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clinical and Translational Medicine, 3, 39.

    Google Scholar 

  62. Zhang, Y., Wang, L., Zhang, M., Jin, M., Bai, C., & Wang, X. (2012). Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. Journal of Cellular Physiology, 227(1), 35–43.

    CAS  PubMed  Google Scholar 

  63. Zong, W. X., & Thompson, C. B. (2006). Necrotic death as a cell fate. Genes and Development, 20(1), 1–15.

    CAS  PubMed  Google Scholar 

  64. Letzkus, M., Luesink, E., Starck-Schwertz, S., Bigaud, M., Mirza, F., Hartmann, N., et al. (2014). Gene expression profiling of immunomagnetically separated cells directly from stabilized whole blood for multicenter clinical trials. Clinical and Translational Medicine, 3, 36.

    PubMed Central  PubMed  Google Scholar 

  65. Spitz, M. R., Gorlov, I. P., Amos, C. I., Dong, Q., Chen, W., Etzel, C. J., et al. (2011). Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke. Cancer Discovery, 1(5), 420–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Stueckle, T. A., Lu, Y., Davis, M. E., Wang, L., Jiang, B. H., Holaskova, I., et al. (2012). Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicology and Applied Pharmacology, 261(2), 204–216.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Landvik, N. E., Tekpli, X., Anmarkrud, K. H., Haugen, A., & Zienolddiny, S. (2012). Molecular characterization of a cancer-related single nucleotide polymorphism in the pro-inflammatory interleukin-1B gene. Molecular Carcinogenesis, 51(Suppl 1), 168–175.

    Google Scholar 

  68. Yan, B., Wang, H., Rabbani, Z. N., Zhao, Y., Li, W., Yuan, Y., et al. (2006). Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Research, 66(24), 11565–11570.

    CAS  PubMed  Google Scholar 

  69. Karabela, S. P., Kairi, C. A., Magkouta, S., Psallidas, I., Moschos, C., Stathopoulos, I., et al. (2011). Neutralization of tumor necrosis factor bioactivity ameliorates urethane-induced pulmonary oncogenesis in mice. Neoplasia, 13(12), 1143–1151.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Verhelst, K., Verstrepen, L., Carpentier, I., & Beyaert, R. (2013). IkappaB kinase epsilon (IKKepsilon): a therapeutic target in inflammation and cancer. Biochemical Pharmacology, 85(7), 873–880.

    CAS  PubMed  Google Scholar 

  71. Karin, M. (2008). The IkappaB kinase—a bridge between inflammation and cancer. Cell Research, 18(3), 334–342.

    CAS  PubMed  Google Scholar 

  72. Azevedo, A., Cunha, V., Teixeira, A. L., & Medeiros, R. (2011). IL6/IL6R as a potential key signaling pathway in prostate cancer development. World Journal of Clinical Oncology, 2(12), 384–396.

    PubMed Central  PubMed  Google Scholar 

  73. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H., & Licona-Limon, P. (2010). The polarization of immune cells in the tumour environment by TGFbeta. Nature Reviews Immunology, 10(8), 554–567.

    CAS  PubMed  Google Scholar 

  74. Shih, C. M., Lee, Y. L., Chiou, H. L., Hsu, W. F., Chen, W. E., Chou, M. C., et al. (2005). The involvement of genetic polymorphism of IL-10 promoter in non-small cell lung cancer. Lung Cancer, 50(3), 291–297.

    PubMed  Google Scholar 

  75. Montuenga, L. M., & Pio, R. (2007). Tumour-associated macrophages in nonsmall cell lung cancer: the role of interleukin-10. European Respiratory Journal, 30(4), 608–610.

    CAS  PubMed  Google Scholar 

  76. Fini, M. A., Elias, A., Johnson, R. J., Richard, M., & Wright, R. M. (2012). Contribution of uric acid to cancer risk, recurrence, and mortality. Clinical and Translational Medicine, 1, 16.

    PubMed Central  PubMed  Google Scholar 

  77. Gurda, G. T., Zhang, L., Wang, Y., Chen, L., Geddes, S., Cho, W. C., et al. (2015). Utility of five commonly used immunohistochemical markers TTF-1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: a retrospective study of 246 fine needle aspiration cases. Clinical and Translational Medicine, 4, 16.

    PubMed Central  PubMed  Google Scholar 

  78. Ganguly, R., Mohyeldin, A., Thiel, J., Kornblum, H. I., Beullen, M., & Nakano, I. (2015). MELK—a conserved kinase: functions, signaling, cancer, and controversy. Clinical and Translational Medicine, 4, 11.

    PubMed Central  PubMed  Google Scholar 

  79. Viger, L., Denis, F., Rosalie, M., & Letellier, C. (2014). A cancer model for the angiogenic switch. Journal of Theoretical Biology, 360, 21–33.

    CAS  PubMed  Google Scholar 

  80. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., et al. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 453(7196), 807–811.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Wang, J. Q., & Wu, K. J. (2015). Epigenetic regulation of epithelial-mesenchymal transition by hypoxia in cancer: targets and therapy. Current Pharmaceutical Design, 21(10), 1272–1278.

    CAS  PubMed  Google Scholar 

  82. Gori, B., Ricciardi, S., Fulvi, A., Del Signore, E., & de Marinis, F. (2012). New oral multitargeted antiangiogenics in non-small-cell lung cancer treatment. Future Oncology, 8(5), 559–573.

    CAS  PubMed  Google Scholar 

  83. Qian, Q., Shi, X., Lei, Z., Zhan, L., Liu, R. Y., Zhao, J., et al. (2014). Methylated +58CpG site decreases DCN mRNA expression and enhances TGF-beta/Smad signaling in NSCLC cells with high metastatic potential. International Journal of Oncology, 44(3), 874–882.

    CAS  PubMed  Google Scholar 

  84. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 9(4), 265–273.

    CAS  PubMed  Google Scholar 

  85. Merikallio, H., Turpeenniemi-Hujanen, T., Paakko, P., Makitaro, R., Riitta, K., Salo, S., et al. (2012). Snail promotes an invasive phenotype in lung carcinoma. Respiratory Research, 13, 104.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gonzalez-Arriaga, P., Pascual, T., Garcia-Alvarez, A., Fernandez-Somoano, A., Lopez-Cima, M. F., & Tardon, A. (2012). Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer, 12, 121.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Li, W., Li, S., Deng, L., Yang, S., Li, M., Long, S., et al. (2015). Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biology. doi:10.1007/s13277-015-3381-7.

  89. Atkinson, J. J., & Senior, R. M. (2003). Matrix metalloproteinase-9 in lung remodeling. American Journal of Respiratory Cell and Molecular Biology, 28(1), 12–24.

    CAS  PubMed  Google Scholar 

  90. Gilles, C., Bassuk, J. A., Pulyaeva, H., Sage, E. H., Foidart, J. M., & Thompson, E. W. (1998). SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Research, 58(23), 5529–5536.

    CAS  PubMed  Google Scholar 

  91. Yu, H., Kortylewski, M., & Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 7(1), 41–51.

    CAS  PubMed  Google Scholar 

  92. Zeni, E., Mazzetti, L., Miotto, D., Lo Cascio, N., Maestrelli, P., Querzoli, P., et al. (2007). Macrophage expression of interleukin-10 is a prognostic factor in nonsmall cell lung cancer. European Respiratory Journal, 30(4), 627–632.

    CAS  PubMed  Google Scholar 

  93. Hatanaka, H., Abe, Y., Kamiya, T., Morino, F., Nagata, J., Tokunaga, T., et al. (2000). Clinical implications of interleukin (IL)-10 induced by non-small-cell lung cancer. Annals of Oncology, 11(7), 815–819.

    CAS  PubMed  Google Scholar 

  94. De Vita, F., Orditura, M., Galizia, G., Romano, C., Roscigno, A., Lieto, E., et al. (2000). Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest, 117(2), 365–373.

    PubMed  Google Scholar 

  95. Pine, S. R., Mechanic, L. E., Enewold, L., Chaturvedi, A. K., Katki, H. A., Zheng, Y. L., et al. (2011). Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. Journal of the National Cancer Institute, 103(14), 1112–1122.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. De Vita, F., Orditura, M., Auriemma, A., Infusino, S., Roscigno, A., & Catalano, G. (1998). Serum levels of interleukin-6 as a prognostic factor in advanced non-small cell lung cancer. Oncology Reports, 5(3), 649–652.

    PubMed  Google Scholar 

  97. Chang, K. T., Huang, C. Y., Tsai, C. M., Chiu, C. H., & Lok, Y. Y. (2005). Role of IL-6 in neuroendocrine differentiation and chemosensitivity of non-small cell lung cancer. American Journal of Physiology - Lung Cellular and Molecular Physiology, 289(3), 438–445.

    Google Scholar 

  98. Jumper, C., Cobos, E., & Lox, C. (2004). Determination of the serum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in patients with either advanced small-cell lung cancer or non-small-cell lung cancer prior to treatment. Respiratory Medicine, 98(2), 173–177.

    PubMed  Google Scholar 

  99. Liu, D., Nakano, J., Ishikawa, S., Yokomise, H., Ueno, M., Kadota, K., et al. (2007). Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer, 58(3), 384–391.

    PubMed  Google Scholar 

  100. Lin, Y., Bai, L., Chen, W., & Xu, S. (2010). The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opinion on Therapeutic Targets, 14(1), 45–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Moran, C. J., Arenberg, D. A., Huang, C. C., Giordano, T. J., Thomas, D. G., Misek, D. E., et al. (2002). RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clinical Cancer Research, 8(12), 3803–3812.

    CAS  PubMed  Google Scholar 

  102. Rothwell, P. M., Fowkes, F. G., Belch, J. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377(9759), 31–41.

    CAS  PubMed  Google Scholar 

  103. Jin, G. H., Hirano, T., & Murakami, M. (2008). Combination treatment with IL-2 and anti-IL-2 mAbs reduces tumor metastasis via NK cell activation. International Immunology, 20(6), 783–789.

    CAS  PubMed  Google Scholar 

  104. Herbst, R. S. (2004). Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology, Biology, and Physics, 59(2 Suppl), 21–26.

    CAS  Google Scholar 

  105. Heinrich, E. L., Walser, T. C., Krysan, K., Liclican, E. L., Grant, J. L., Rodriguez, N. L., et al. (2012). The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenvironment, 5(1), 5–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Sato, M., Shames, D. S., & Hasegawa, Y. (2012). Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology, 17(7), 1048–1059.

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW); the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010, 81170473, 81470282); the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100); Operation funding of Shanghai Institute of Clinical Bioinformatics; and Ministry of Education, Academic Special Science and Research Foundation for Ph.D. Education (20130071110043).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Cheng or Xiangdong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Wang, L., Hou, J. et al. Targeting roles of inflammatory microenvironment in lung cancer and metastasis. Cancer Metastasis Rev 34, 319–331 (2015). https://doi.org/10.1007/s10555-015-9570-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9570-4

Keywords

Navigation