Skip to main content

Advertisement

Log in

GAP-independent functions of DLC1 in metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  2. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    Article  PubMed  CAS  Google Scholar 

  3. Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. New England Journal of Medicine, 359(26), 2814–2823.

    Article  PubMed  CAS  Google Scholar 

  4. Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.

    Article  PubMed  CAS  Google Scholar 

  5. Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56–68.

    Article  PubMed  CAS  Google Scholar 

  6. Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2(11), 793–805.

    Article  PubMed  CAS  Google Scholar 

  7. Grise, F., Bidaud, A., & Moreau, V. (2009). Rho GTPases in hepatocellular carcinoma. Biochimica et Biophysica Acta, 1795(2), 137–151.

    PubMed  CAS  Google Scholar 

  8. Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.

    Article  PubMed  CAS  Google Scholar 

  9. Ridley, A. J. (2001). Rho GTPases and cell migration. Journal of Cell Science, 114(15), 2713–2722.

    PubMed  CAS  Google Scholar 

  10. Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.

    Article  PubMed  CAS  Google Scholar 

  11. Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.

    Article  PubMed  CAS  Google Scholar 

  12. Lahoz, A., & Hall, A. (2008). DLC1: a significant GAP in the cancer genome. Genes and Development, 22(13), 1724–1730.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.

    Article  PubMed  CAS  Google Scholar 

  14. Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes and Development, 22(11), 1439–1444.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Liao, Y. C., & Lo, S. H. (2008). Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. International Journal of Biochemistry and Cell Biology, 40(5), 843–847.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Lukasik, D., Wilczek, E., Wasiutynski, A., & Gornicka, B. (2011). Deleted in liver cancer protein family in human malignancies (Review). Oncology Letters, 2(5), 763–768.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. El-Sitt, S., & El-Sibai, M. (2013). The STAR of the DLC family. Journal of Receptor and Signal Transduction Research, 33(1), 10–13.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, T. Y., Vigil, D., Der, C. J., & Juliano, R. L. (2009). Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer and Metastasis Reviews, 28(1–2), 77–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Feng, X., Li, C., Liu, W., Chen, H., Zhou, W., Wang, L., et al. (2013). DLC-1, a candidate tumor suppressor gene, inhibits the proliferation, migration and tumorigenicity of human nasopharyngeal carcinoma cells. International Journal of Oncology, 42(6), 1973–1984.

    PubMed  CAS  Google Scholar 

  20. Wu, P. P., Jin, Y. L., Shang, Y. F., Jin, Z., Wu, P., & Huang, P. L. (2009). Restoration of DLC1 gene inhibits proliferation and migration of human colon cancer HT29 cells. Annals of Clinical and Laboratory Science, 39(3), 263–269.

    PubMed  CAS  Google Scholar 

  21. Heering, J., Erlmann, P., & Olayioye, M. A. (2009). Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Experimental Cell Research, 315(15), 2505–2514.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, T. Y., Healy, K. D., Der, C. J., Sciaky, N., Bang, Y. J., & Juliano, R. L. (2008). Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. Journal of Biological Chemistry, 283(47), 32762–32770.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.

    Article  PubMed  CAS  Google Scholar 

  24. Ullmannova-Benson, V., Guan, M., Zhou, X., Tripathi, V., Yang, X. Y., Zimonjic, D. B., et al. (2009). DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. Leukemia, 23(2), 383–390.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.

    PubMed  CAS  Google Scholar 

  28. Yau, T. O., Leung, T. H., Lam, S., Cheung, O. F., Tung, E. K., Khong, P. L., et al. (2009). Deleted in liver cancer 2 (DLC2) was dispensable for development and its deficiency did not aggravate hepatocarcinogenesis. PLoS One, 4(8), e6566.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Homma, Y., & Emori, Y. (1995). A dual functional signal mediator showing RhoGAP and phospholipase C-δ stimulating activities. EMBO Journal, 14(2), 286–291.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Research, 58(10), 2196–2199.

    PubMed  CAS  Google Scholar 

  31. Durkin, M. E., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2002). Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). Gene, 288(1–2), 119–127.

    Article  PubMed  CAS  Google Scholar 

  32. Qian, X., Durkin, M. E., Wang, D., Tripathi, B. K., Olson, L., Yang, X. Y., et al. (2012). Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. Cancer Research, 72(22), 5900–5911.

    Article  PubMed  CAS  Google Scholar 

  33. Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.

    Article  PubMed  CAS  Google Scholar 

  34. Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO Journal, 20(4), 755–766.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.

    Article  PubMed  CAS  Google Scholar 

  36. Matsuyama, H., Pan, Y., Oba, K., Yoshihiro, S., Matsuda, K., Hagarth, L., et al. (2001). Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clinical Cancer Research, 7(10), 3139–3143.

    PubMed  CAS  Google Scholar 

  37. Wilson, P. J., McGlinn, E., Marsh, A., Evans, T., Arnold, J., Wright, K., et al. (2000). Sequence variants of DLC1 in colorectal and ovarian tumours. Human Mutation, 15(2), 156–165.

    Article  PubMed  CAS  Google Scholar 

  38. Yuan, B. Z., Durkin, M. E., & Popescu, N. C. (2003). Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genetics and Cytogenetics, 140(2), 113–117.

    Article  PubMed  CAS  Google Scholar 

  39. Guan, M., Zhou, X., Soulitzis, N., Spandidos, D. A., & Popescu, N. C. (2006). Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clinical Cancer Research, 12(5), 1412–1419.

    Article  PubMed  CAS  Google Scholar 

  40. Scholz, R. P., Regner, J., Theil, A., Erlmann, P., Holeiter, G., Jahne, R., et al. (2009). DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. Journal of Cell Science, 122(1), 92–102.

    Article  PubMed  CAS  Google Scholar 

  41. Scholz, R. P., Gustafsson, J. O., Hoffmann, P., Jaiswal, M., Ahmadian, M. R., Eisler, S. A., et al. (2011). The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Experimental Cell Research, 317(4), 496–503.

    Article  PubMed  CAS  Google Scholar 

  42. Ko, F. C., Chan, L. K., Tung, E. K., Lowe, S. W., Ng, I. O., & Yam, J. W. (2010). Akt phosphorylation of deleted in liver cancer 1 abrogates its suppression of liver cancer tumorigenesis and metastasis. Gastroenterology, 139(4), 1397–1407.

    Article  PubMed  CAS  Google Scholar 

  43. Ko, F. C., Chan, L. K., Man-Fong, S. K., Yeung, Y. S., Yuk-Ting, T. E., Lu, P., et al. (2013). PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. Nature Communications, 41618.

  44. Zhong, D., Zhang, J., Yang, S., Soh, U. J., Buschdorf, J. P., Zhou, Y. T., et al. (2009). The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration. Journal of Cell Science, 122(3), 414–424.

    Article  PubMed  CAS  Google Scholar 

  45. Kim, C. A., & Bowie, J. U. (2003). SAM domains: uniform structure, diversity of function. Trends in Biochemical Sciences, 28(12), 625–628.

    Article  PubMed  CAS  Google Scholar 

  46. Li, G., Du, X., Vass, W. C., Papageorge, A. G., Lowy, D. R., & Qian, X. (2011). Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proceedings of the National Academy of Sciences of the United States of America, 108(41), 17129–17134.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Sekimata, M., Kabuyama, Y., Emori, Y., & Homma, Y. (1999). Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. Journal of Biological Chemistry, 274(25), 17757–17762.

    Article  PubMed  CAS  Google Scholar 

  48. Clark, B. J. (2012). The mammalian START domain protein family in lipid transport in health and disease. Journal of Endocrinology, 212(3), 257–275.

    Article  PubMed  CAS  Google Scholar 

  49. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374.

    Article  PubMed  CAS  Google Scholar 

  50. Holeiter, G., Heering, J., Erlmann, P., Schmid, S., Jahne, R., & Olayioye, M. A. (2008). Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Research, 68(21), 8743–8751.

    Article  PubMed  CAS  Google Scholar 

  51. Jin, Y., Tian, X., Shang, Y., & Huang, P. (2008). Inhibition of DLC-1 gene expression by RNA interference in the colon cancer LoVo cell line. Oncology Reports, 19(3), 669–674.

    PubMed  CAS  Google Scholar 

  52. Shih, Y. P., Takada, Y., & Lo, S. H. (2012). Silencing of DLC1 upregulates PAI-1 expression and reduces migration in normal prostate cells. Molecular Cancer Research, 10(1), 34–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Durkin, M. E., Avner, M. R., Huh, C. G., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2005). DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Letters, 579(5), 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  54. Franz, C. M., Jones, G. E., & Ridley, A. J. (2002). Cell migration in development and disease. Developmental Cell, 2(2), 153–158.

    Article  PubMed  CAS  Google Scholar 

  55. Pilz, D., Stoodley, N., & Golden, J. A. (2002). Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. Journal of Neuropathology and Experimental Neurology, 61(1), 1–11.

    PubMed  Google Scholar 

  56. Cramer L.P. (2013). Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology 25:591–599.

    Google Scholar 

  57. Pollard, T. D., & Cooper, J. A. (2009). Actin, a central player in cell shape and movement. Science, 326(5957), 1208–1212.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.

    Article  PubMed  CAS  Google Scholar 

  60. Takaishi, K., Kikuchi, A., Kuroda, S., Kotani, K., Sasaki, T., & Takai, Y. (1993). Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Molecular and Cellular Biology, 13(1), 72–79.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and αVβ5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331.

    Article  PubMed  CAS  Google Scholar 

  62. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1–2), 15–33.

    Article  PubMed  Google Scholar 

  63. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.

    Article  PubMed  CAS  Google Scholar 

  64. Banyard, J., Anand-Apte, B., Symons, M., & Zetter, B. R. (2000). Motility and invasion are differentially modulated by Rho family GTPases. Oncogene, 19(4), 580–591.

    Article  PubMed  CAS  Google Scholar 

  65. Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2(2), 133–142.

    Article  PubMed  Google Scholar 

  66. Yoshioka, K., Nakamori, S., & Itoh, K. (1999). Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Research, 59(8), 2004–2010.

    PubMed  CAS  Google Scholar 

  67. Wheeler, A. P., & Ridley, A. J. (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Experimental Cell Research, 301(1), 43–49.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, A. X., Rane, N., Liu, J. P., & Prendergast, G. C. (2001). RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Molecular and Cellular Biology, 21(20), 6906–6912.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes and Development, 19(17), 1974–1979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406(6795), 532–535.

    Article  PubMed  CAS  Google Scholar 

  71. Iiizumi, M., Bandyopadhyay, S., Pai, S. K., Watabe, M., Hirota, S., Hosobe, S., et al. (2008). RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Research, 68(18), 7613–7620.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemistry Journal, 348(2), 2241–2255.

    Article  Google Scholar 

  73. Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO Journal, 15(9), 2208–2216.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Chesarone, M. A., DuPage, A. G., & Goode, B. L. (2010). Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Reviews Molecular Cell Biology, 11(1), 62–74.

    Article  PubMed  CAS  Google Scholar 

  75. Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in Biologicals, 265(1), 23–32.

    Article  CAS  Google Scholar 

  76. Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., Alberts, A. S., Pfister, K. K., et al. (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology, 11(19), 1536–1541.

    Article  PubMed  CAS  Google Scholar 

  77. Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda, D. B., Riou, P., et al. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Wong, C. C., Wong, C. M., Ko, F. C., Chan, L. K., Ching, Y. P., Yam, J. W., et al. (2008). Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One, 3(7), e2779.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Molecular Pharmacology, 57(5), 976–983.

    PubMed  CAS  Google Scholar 

  80. Tripathi, V., Popescu, N. C., & Zimonjic, D. B. (2012). DLC1 interaction with α-catenin stabilizes adherens junctions and enhances DLC1 antioncogenic activity. Molecular and Cellular Biology, 32(11), 2145–2159.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 11(7), 502–514.

    Article  PubMed  CAS  Google Scholar 

  82. Desai, R., Sarpal, R., Ishiyama, N., Pellikka, M., Ikura, M., & Tepass, U. (2013). Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature Cell Biology, 15(3), 261–273.

    Article  PubMed  CAS  Google Scholar 

  83. Kobielak, A., & Fuchs, E. (2004). α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Reviews Molecular Cell Biology, 5(8), 614–625.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Tripathi V., Popescu N.C. & Zimonjic D.B. (2013). DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. doi:10.1038/onc.2013.7.

  85. Yam, J. W., Ko, F. C., Chan, C. Y., Jin, D. Y., & Ng, I. O. (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Research, 66(17), 8367–8372.

    Article  PubMed  CAS  Google Scholar 

  86. Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Cao, X., Voss, C., Zhao, B., Kaneko, T., & Li, S. S. (2012). Differential regulation of the activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and transformation. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1455–1460.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Yang, X., Popescu, N. C., & Zimonjic, D. B. (2011). DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Research, 71(8), 2916–2925.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Du, X., Qian, X., Papageorge, A., Schetter, A. J., Vass, W. C., Liu, X., et al. (2012). Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Research, 72(17), 4405–4416.

    Article  PubMed  CAS  Google Scholar 

  91. Yang, X. Y., Guan, M., Vigil, D., Der, C. J., Lowy, D. R., & Popescu, N. C. (2009). p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene, 28(11), 1401–1409.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Yin, H. L., & Janmey, P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annual Review of Physiology, 65(65), 761–789.

    Article  PubMed  CAS  Google Scholar 

  93. Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell, 100(2), 221–228.

    Article  PubMed  CAS  Google Scholar 

  94. Toker, A. (1998). The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Current Opinion in Cell Biology, 10(2), 254–261.

    Article  PubMed  CAS  Google Scholar 

  95. Kawai, K., Yamaga, M., Iwamae, Y., Kiyota, M., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122RhoGAP, is localized in focal adhesions. Biochemical Society Transactions, 32(6), 1107–1109.

    Article  PubMed  CAS  Google Scholar 

  96. Xiang, T., Li, L., Fan, Y., Jiang, Y., Ying, Y., Putti, T. C., et al. (2010). PLCD1 is a functional tumor suppressor inducing G(2)/M arrest and frequently methylated in breast cancer. Cancer Biology and Therapy, 10(5), 520–527.

    Article  PubMed  CAS  Google Scholar 

  97. Liao, Y. C., Shih, Y. P., & Lo, S. H. (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Research, 68(19), 7718–7722.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Kawai, K., Iwamae, Y., Yamaga, M., Kiyota, M., Ishii, H., Hirata, H., et al. (2009). Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes to Cells, 14(2), 227–241.

    Article  PubMed  CAS  Google Scholar 

  99. Chan, L. K., Ko, F. C., Ng, I. O., & Yam, J. W. (2009). Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS One, 4(5), e5572.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Chan, L. K., Ko, F. C., Sze, K. M., Ng, I. O., & Yam, J. W. (2011). Nuclear-targeted deleted in liver cancer 1 (DLC1) is less efficient in exerting its tumor suppressive activity both in vitro and in vivo. PLoS One, 6(9), e25547.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Chen, L., Liu, C., Ko, F. C., Xu, N., Ng, I. O., Yam, J. W., et al. (2012). Solution structure of the phosphotyrosine binding (PTB) domain of human tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. Journal of Biological Chemistry, 287(31), 26104–26114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(3), 416–420.

    Article  PubMed  CAS  Google Scholar 

  103. Lo, S. H. (2004). Tensin. International Journal of Biochemistry and Cell Biology, 36(1), 31–34.

    Article  PubMed  CAS  Google Scholar 

  104. Chen, H., Duncan, I. C., Bozorgchami, H., & Lo, S. H. (2002). Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 733–738.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Chen, H., & Lo, S. H. (2003). Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochemistry Journal, 370(3), 1039–1045.

    Article  CAS  Google Scholar 

  106. Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., et al. (2003). Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2272–2277.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 20(44), 6459–6472.

    Article  PubMed  CAS  Google Scholar 

  108. West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154(1), 161–176.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Li, Y., & Cozzi, P. J. (2007). Targeting uPA/uPAR in prostate cancer. Cancer Treatment Reviews, 33(6), 521–527.

    Article  PubMed  CAS  Google Scholar 

  110. Czekay, R. P., & Loskutoff, D. J. (2009). Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. Journal of Cellular Physiology, 220(3), 655–663.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. Journal of Cell Biology, 160(5), 781–791.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., et al. (2011). PAI-1: an integrator of cell signaling and migration. International Journal of Cell Biology, 2011562481.

  113. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.

    Article  PubMed  CAS  Google Scholar 

  114. Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 22.

  115. Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25(1), 9–34.

    Article  PubMed  CAS  Google Scholar 

  116. Wai, P. Y., & Kuo, P. C. (2004). The role of Osteopontin in tumor metastasis. Journal of Surgical Research, 121(2), 228–241.

    Article  PubMed  CAS  Google Scholar 

  117. Navarro, A., Anand-Apte, B., & Parat, M. O. (2004). A role for caveolae in cell migration. FASEB Journal, 18(15), 1801–1811.

    Article  PubMed  CAS  Google Scholar 

  118. Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. Journal of Cell Biology, 144(6), 1285–1294.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Puyraimond, A., Fridman, R., Lemesle, M., Arbeille, B., & Menashi, S. (2001). MMP-2 colocalizes with caveolae on the surface of endothelial cells. Experimental Cell Research, 262(1), 28–36.

    Article  PubMed  CAS  Google Scholar 

  120. Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. Journal of Cell Science, 115(3), 475–484.

    PubMed  CAS  Google Scholar 

  121. Yamaga, M., Sekimata, M., Fujii, M., Kawai, K., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. Genes to Cells, 9(1), 25–37.

    Article  PubMed  CAS  Google Scholar 

  122. Liu, G., Grant, W. M., Persky, D., Latham, V. M., Jr., Singer, R. H., & Condeelis, J. (2002). Interactions of elongation factor 1α with F-actin and β-actin mRNA: implications for anchoring mRNA in cell protrusions. Molecular Biology of the Cell, 13(2), 579–592.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Gross, S. R., & Kinzy, T. G. (2005). Translation elongation factor 1α is essential for regulation of the actin cytoskeleton and cell morphology. Nature Structural and Molecular Biology, 12(9), 772–778.

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, J., Guo, H., Mi, Z., Gao, C., Bhattacharya, S., Li, J., et al. (2009). EF1A1-actin interactions alter mRNA stability to determine differential osteopontin expression in HepG2 and Hep3B cells. Experimental Cell Research, 315(2), 304–312.

    Article  PubMed  CAS  Google Scholar 

  125. Hu, K. Q., & Settleman, J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO Journal, 16(3), 473–483.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Bradley, W. D., Hernandez, S. E., Settleman, J., & Koleske, A. J. (2006). Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Molecular Biology of the Cell, 17(11), 4827–4836.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Akagi, I., Okayama, H., Schetter, A. J., Robles, A. I., Kohno, T., Bowman, E. D., et al. (2013). Combination of Protein Coding and Noncoding Gene Expression as a Robust Prognostic Classifier in Stage I Lung Adenocarcinoma. Cancer Research, 73(13), 3821–3832.

    Article  PubMed  CAS  Google Scholar 

  128. Ullmannova, V., & Popescu, N. C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detection and Prevention, 31(2), 110–118.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Nagaraja, G. M., & Kandpal, R. P. (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochemical and Biophysical Research Communications, 313(3), 654–665.

    Article  PubMed  CAS  Google Scholar 

  130. Leung, T. H., Ching, Y. P., Yam, J. W., Wong, C. M., Yau, T. O., Jin, D. Y., et al. (2005). Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15207–15212.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Lin, Y., Chen, N. T., Shih, Y. P., Liao, Y. C., Xue, L., & Lo, S. H. (2010). DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration. Oncogene, 29(20), 3010–3016.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Ng, D. C., Chan, S. F., Kok, K. H., Yam, J. W., Ching, Y. P., Ng, I. O., et al. (2006). Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. FEBS Letters, 580(1), 191–198.

    Article  PubMed  CAS  Google Scholar 

  133. Ching, Y. P., Wong, C. M., Chan, S. F., Leung, T. H., Ng, D. C., Jin, D. Y., et al. (2003). Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. Journal of Biological Chemistry, 278(12), 10824–10830.

    Article  PubMed  CAS  Google Scholar 

  134. Barras, D., Lorusso, G., Rüegg, C., & Widmann, C. (2013). Inhibition of cell migration and invasion by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene. doi:10.1038/onc.2013.465.

Download references

Acknowledgments

We thank Lluis Fajas and Mathieu Heulot for valuable comments on this review. We apologize to colleagues whose work was not highlighted owing to space limitations. C.W. is supported by grants from the Swiss National Science Foundation (no. 31003A_141242/1) and the Swiss Cancer League (no. KFS-02543-02-2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Widmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barras, D., Widmann, C. GAP-independent functions of DLC1 in metastasis. Cancer Metastasis Rev 33, 87–100 (2014). https://doi.org/10.1007/s10555-013-9458-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9458-0

Keywords

Navigation