Skip to main content

Advertisement

Log in

The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 homologues, TA-p73, and p63 have been shown to function as tumor suppressors. However, how they function as tumor suppressors remains elusive. Here, I propose a number of tumor suppressor pathways that illustrate how the TA-p73 and p63 could function as negative regulators of invasion, metastasis, and cancer stem cells (CSCs) proliferation. Furthermore, I provide molecular insights into how TA-p73 and p63 could function as tumor suppressors. Remarkably, the guardians—p53, p73, and p63—of the genome are in control of most of the known tumor suppressor miRNAs, tumor suppressor genes, and metastasis suppressors by suppressing c-myc through miR-145/let-7/miR-34/TRIM32/PTEN/FBXW7. In particular, p53 and TA-p73/p63 appear to upregulate the expression of (1) tumor suppressor miRNAs, such as let-7, miR-34, miR-15/16a, miR-145, miR-29, miR-26, miR-30, and miR-146a; (2) tumor suppressor genes, such as PTEN, RBs, CDKN1a/b/c, and CDKN2a/b/c/d; (3) metastasis suppressors, such as Raf kinase inhibitory protein, CycG2, and DEC2, and thereby they enlarge their tumor suppressor network to inhibit tumorigenesis, invasion, angiogenesis, migration, metastasis, and CSCs proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boominathan, L. (2007). Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Molecular Cancer, 6, 27.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, H. Z., Tsai, S. Y., & Leone, G. (2009). Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer, 9(11), 785–97.

    Article  CAS  PubMed  Google Scholar 

  3. Puig, P., Capodieci, P., Drobnjak, M., Verbel, D., Prives, C., Cordon-Cardo, C., et al. (2003). p73 expression in human normal and tumor tissues: loss of p73alpha expression is associated with tumor progression in bladder cancer. Clinical Cancer Research, 9(15), 5642–5651.

    CAS  PubMed  Google Scholar 

  4. Urist, M. J., Di Como, C. J., Lu, M. L., Charytonowicz, E., Verbel, D., Crum, C. P., et al. (2002). Loss of p63 expression is associated with tumor progression in bladder cancer. The American Journal of Pathology, 161(4), 1199–1206.

    CAS  PubMed  Google Scholar 

  5. Park, B. J., Lee, S. J., Kim, J. I., Lee, S. J., Lee, C. H., Chang, S. G., et al. (2000). Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Research, 60(13), 3370–3374.

    CAS  PubMed  Google Scholar 

  6. Oya, M., & Schulz, W. A. (2000). Decreased expression of p57(KIP2)mRNA in human bladder cancer. British Journal of Cancer, 83(5), 626–631.

    Article  CAS  PubMed  Google Scholar 

  7. Kunze, E., Wendt, M., & Schlott, T. (2006). Promoter hypermethylation of the 14-3-3 sigma, SYK and CAGE-1 genes is related to the various phenotypes of urinary bladder carcinomas and associated with progression of transitional cell carcinomas. International Journal of Molecular Medicine, 18(4), 547–557.

    CAS  PubMed  Google Scholar 

  8. Moreira, J. M., Gromov, P., & Celis, J. E. (2004). Expression of the tumor suppressor protein 14-3-3 sigma is down-regulated in invasive transitional cell carcinomas of the urinary bladder undergoing epithelial-to-mesenchymal transition. Molecular & Cellular Proteomics, 3(4), 410–419.

    Article  CAS  Google Scholar 

  9. Le Frère-Belda, M. A., Cappellen, D., Daher, A., Gil-Diez-de-Medina, S., Besse, F., Abbou, C. C., et al. (2001). p15(INK4b) in bladder carcinomas: decreased expression in superficial tumours. British Journal of Cancer, 85(10), 1515–1521.

    Article  PubMed  Google Scholar 

  10. Pymar, L. S., Platt, F. M., Askham, J. M., Morrison, E. E., & Knowles, M. A. (2008). Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Human Molecular Genetics, 17(13), 2006–2017.

    Article  CAS  PubMed  Google Scholar 

  11. Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., et al. (2002). FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. The American Journal of Pathology, 160(4), 1345–1352.

    CAS  PubMed  Google Scholar 

  12. Tsuruta, H., Kishimoto, H., Sasaki, T., Horie, Y., Natsui, M., Shibata, Y., et al. (2006). Hyperplasia and carcinomas in PTEN-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Research, 66(17), 8389–8396.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, E. J., Kim, Y. J., Jeong, P., Ha, Y. S., Bae, S. C., & Kim, W. J. (2008). Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor. Urology, 180(3), 1141–1145.

    Article  CAS  Google Scholar 

  14. Ostenfeld, M. S., Bramsen, J. B., Lamy, P., Villadsen, S. B., Fristrup, N., Sørensen, K. D., et al. (2010). miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 29(7), 1073–1084.

    Article  CAS  PubMed  Google Scholar 

  15. Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer (in press)

  16. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  17. Mo, L., Zheng, X., Huang, H. Y., Shapiro, E., Lepor, H., Cordon-Cardo, C., et al. (2007). Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. The Journal of Clinical Investigation, 117(2), 314–325.

    Article  CAS  PubMed  Google Scholar 

  18. Knowles, M. A., Platt, F. M., Ross, R. L., & Hurst, C. D. (2009). Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 28(3–4), 305–316. Review.

    Article  CAS  PubMed  Google Scholar 

  19. Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes & Development, 22(19), 2677–2691.

    Article  CAS  Google Scholar 

  20. He, L., Fan, C., Ning, X., Feng, X., Liu, Y., Chen, B., et al. (2008). Interaction of p14ARF with Brca1 in cancer cell lines and primary breast cancer. Cell Biology International, 32(10), 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, J. W., Field, S. J., Gore, L., Thompson, M., Yang, H., Fujiwara, Y., et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Molecular and Cellular Biology, 2001(24), 8547–8564.

    Article  Google Scholar 

  22. Opavsky, R., Tsai, S. Y., Guimond, M., Arora, A., Opavska, J., Becknell, B., et al. (2007). Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15400–15405.

    Article  CAS  PubMed  Google Scholar 

  23. Friedman, L. S., Thistlethwaite, F. C., Patel, K. J., Yu, V. P., Lee, H., Venkitaraman, A. R., et al. (1998). Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Research, 58(7), 1338–1343.

    CAS  PubMed  Google Scholar 

  24. Szremska, A. P., Kenner, L., Weisz, E., Ott, R. G., Passegué, E., Artwohl, M., et al. (2003). JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 102(12), 4159–4165.

    Article  CAS  PubMed  Google Scholar 

  25. Passegué, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.

    Article  PubMed  Google Scholar 

  26. Passegué, E., Jochum, W., Schorpp-Kistner, M., Möhle-Steinlein, U., & Wagner, E. F. (2001). Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell, 104(1), 21–32.

    Article  PubMed  Google Scholar 

  27. Passegué, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.

    Article  PubMed  Google Scholar 

  28. Corn, P. G., Kuerbitz, S. J., van Noesel, M. M., Esteller, M., Compitello, N., Baylin, S. B., et al. (1999). Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Research, 59(14), 3352–3356.

    CAS  PubMed  Google Scholar 

  29. Yamaguchi, H., Inokuchi, K., Sakuma, Y., & Dan, K. (2001). Mutation of the p51/p63 gene is associated with blastic crisis in chronic myelogenous leukemia. Leukemia, 11, 1729–1734.

    Google Scholar 

  30. Marreiros, A., Dudgeon, K., Dao, V., Grimm, M. O., Czolij, R., Crossley, M., et al. (2005). KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene, 24(4), 637–649.

    Article  CAS  PubMed  Google Scholar 

  31. Koster, M. I., Kim, S., Huang, J., Williams, T., & Roop, D. R. (2006). TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Developmental Biology, 289(1), 253–261.

    Article  CAS  PubMed  Google Scholar 

  32. Li, H., Watts, G. S., Oshiro, M. M., Futscher, B. W., & Domann, F. E. (2006). AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 25(39), 5405–5415.

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell, D. C., Abdelrahim, M., Weng, J., Stafford, L. J., Safe, S., Bar-Eli, M., et al. (2006). Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. The Journal of Biological Chemistry, 281(1), 51–58.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Carbayo, M., Capodieci, P., & Cordon-Cardo, C. (2003). Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. The American Journal of Pathology, 162(2), 609–617.

    CAS  PubMed  Google Scholar 

  35. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated miRNA cluster. Nature Genetics, 38(9), 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H., et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology, 6, 694–704.

    Article  CAS  Google Scholar 

  37. Lim, S. O., Kim, H., & Jung, G. (2010). p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma. FEBS Letters, 584(11), 2231–2236.

    Article  CAS  PubMed  Google Scholar 

  38. Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 15(3), 195–206.

    Article  CAS  PubMed  Google Scholar 

  39. Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., et al. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27(15), 2243–2248.

    Article  CAS  PubMed  Google Scholar 

  40. Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., et al. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111.

    CAS  Google Scholar 

  41. Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.

    Article  CAS  PubMed  Google Scholar 

  42. Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., et al. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell, 103(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  43. Ozaki, T., Okoshi, R., Sang, M., Kubo, N., & Nakagawara, A. (2009). Acetylation status of E2F-1 has an important role in the regulation of E2F-1-mediated transactivation of tumor suppressor p73. Biochemical and Biophysical Research Communications, 386(1), 207–211.

    Article  CAS  PubMed  Google Scholar 

  44. Sayan, B. S., Sayan, A. E., Yang, A. L., Aqeilan, R. I., Candi, E., Cohen, G. M., et al. (2007). Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10871–10876.

    Article  CAS  PubMed  Google Scholar 

  45. Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275(1), 44–53.

    Article  CAS  PubMed  Google Scholar 

  46. Salvi, A., Sabelli, C., Moncini, S., Venturin, M., Arici, B., Riva, P., et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. The FEBS Journal, 276(11), 2966–2982.

    Article  CAS  PubMed  Google Scholar 

  47. Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). p53- induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339.

    Article  CAS  PubMed  Google Scholar 

  48. Sachdeva, M., & Mo, Y. Y. (2010). MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Research, 70(1), 378–387.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, X., Gong, J., Zeng, H., Chen, N., Huang, R., et al. (2010). MicroRNA145 targets BNIP3 and suppresses prostate cancer progression. Cancer Research, 70(7), 2728–2738.

    Article  CAS  PubMed  Google Scholar 

  50. Chiyomaru, T., Enokida, H., Tatarano, S., Kawahara, K., Uchida, Y., Nishiyama, K., et al. (2010). miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. British Journal of Cancer, 102(5), 883–891.

    Article  CAS  PubMed  Google Scholar 

  51. Kano, M., Seki, N., Kikkawa, N., Fujimura, L., Hoshino, I., Akutsu, Y., Chiyomaru, T., Enokida, H., Nakagawa, M., Matsubara, H. (2010). miR-145, miR-133a and miR-133b: Tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer (in press)

  52. Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597.

    Article  CAS  PubMed  Google Scholar 

  53. Boominathan, L. (2010). The Tumor suppressors p53, p63, and p73 inhibit migrating cancer stem cells by increasing the expression of stem cell suppressing miRNAs Nature Precedings, http://hdl.handle.net/10101/npre.2010.4385.1.

  54. Boominathan, L. (2009). p63, p73, & p53 are negative regulators of epithelial to mesenchymal transition (EMT), invasion & metastasis. Nature Precedings http://dx.doi.org/10.1038/npre.2009.4109.1.

  55. Leong, K. G., Niessen, K., Kulic, I., Raouf, A., Eaves, C., Pollet, I., et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. The Journal of Experimental Medicine, 204(12), 2935–2948.

    Article  CAS  PubMed  Google Scholar 

  56. Hooper, C., Tavassoli, M., Chapple, J. P., Uwanogho, D., Goodyear, R., Melino, G., et al. (2006). TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. Journal of Neurochemistry, 99(3), 989–999.

    Article  CAS  PubMed  Google Scholar 

  57. Chu, W. K., Dai, P. M., Li, H. L., & Chen, J. K. (2008). Transcriptional activity of the DeltaNp63 promoter is regulated by STAT3. The Journal of Biological Chemistry, 283(12), 7328–7337.

    Article  CAS  PubMed  Google Scholar 

  58. Nishi, H., Senoo, M., Nishi, K. H., Murphy, B., Rikiyama, T., Matsumura, Y., et al. (2001). p53 Homologue p63 represses epidermal growth factor receptor expression. The Journal of Biological Chemistry, 276(45), 41717–41724.

    Article  CAS  PubMed  Google Scholar 

  59. Lo, H. W., Hsu, S. C., Xia, W., Cao, X., Shih, J. Y., Wei, Y., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67(19), 9066–9076.

    Article  CAS  PubMed  Google Scholar 

  60. Cho, M. S., Chan, I. L., & Flores, E. R. (2010). DeltaNp63 transcriptionally regulates brachyury, a gene with diverse roles in limb development, tumorigenesis and metastasis. Cell Cycle, 9(12).

  61. Fernando, R. I., Litzinger, M., Trono, P., Hamilton, D. H., Schlom, J., & Palena, C. (2010). The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. The Journal of Clinical Investigation, 120(2), 533–544.

    Article  CAS  PubMed  Google Scholar 

  62. Senoo, M., Matsumura, Y., & Habu, S. (2002). TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene, 21(16), 2455–2465.

    Article  CAS  PubMed  Google Scholar 

  63. Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66(1), 46–51.

    Article  CAS  PubMed  Google Scholar 

  64. Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.

    Article  CAS  PubMed  Google Scholar 

  65. Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10(3), 295–305.

    Article  CAS  PubMed  Google Scholar 

  66. Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6(10), 931–940.

    Article  CAS  PubMed  Google Scholar 

  68. Fukushima, H., Koga, F., Kawakami, S., Fujii, Y., Yoshida, S., Ratovitski, E., et al. (2009). Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Research, 69(24), 9263–9270.

    Article  CAS  PubMed  Google Scholar 

  69. Shin, S., Dimitri, C. A., Yoon, S. O., Dowdle, W., & Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Molecular Cell, 38(1), 114–127.

    Article  CAS  PubMed  Google Scholar 

  70. Higashikawa, K., Yoneda, S., Tobiume, K., Saitoh, M., Taki, M., et al. (2009). DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. International Journal of Cancer, 124(12), 2837–2844.

    Article  CAS  Google Scholar 

  71. Kommagani, R., Leonard, M. K., Lewis, S., Romano, R. A., Sinha, S., & Kadakia, M. P. (2009). Regulation of VDR by deltaNp63alpha is associated with inhibition of cell invasion. Journal of Cell Science, 122(Pt 16), 2828–2835.

    Article  CAS  PubMed  Google Scholar 

  72. Kommagani, R., Payal, V., & Kadakia, M. P. (2007). Differential regulation of vitamin D receptor (VDR) by the p53 Family: p73-dependent induction of VDR upon DNA damage. The Journal of Biological Chemistry, 282(41), 29847–29854.

    Article  CAS  PubMed  Google Scholar 

  73. Pálmer, H. G., González-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.

    Article  PubMed  Google Scholar 

  74. Pálmer, H. G., Larriba, M. J., García, J. M., Ordóñez-Morán, P., Peña, C., Peiró, S., et al. (2004). The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Natural Medicines, 10(9), 917–919.

    Article  CAS  Google Scholar 

  75. Peña, C., García, J. M., Silva, J., García, V., Rodríguez, R., Alonso, I., et al. (2005). E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Human Molecular Genetics, 14(22), 3361–3370.

    Article  PubMed  CAS  Google Scholar 

  76. Higashikawa, K., Yoneda, S., Tobiume, K., Taki, M., & Shigeishi, H. (2007). Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Research, 67(19), 9207–9213.

    Article  CAS  PubMed  Google Scholar 

  77. Aberdam, D., Gambaro, K., Rostagno, P., Aberdam, E., de la Forest Divonne, S., & Rouleau, M. (2007). Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle, 6(3), 291–294.

    CAS  PubMed  Google Scholar 

  78. Chikh, A., Sayan, E., Thibaut, S., Lena, A. M., DiGiorgi, S., Bernard, B. A., et al. (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochemical and Biophysical Research Communications, 361(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  79. Yan, W., Cao, Q. J., Arenas, R. B., Bentley, B., & Shao, R. (2010). GATA3 inhibits breast cancer metastasis through the reversal of epithelial–mesenchymal transition. The Journal of Biological Chemistry, 285(18), 14042–14051.

    Article  CAS  PubMed  Google Scholar 

  80. Kouros-Mehr, H., Bechis, S. K., Slorach, E. M., Littlepage, L. E., Egeblad, M., Ewald, A. J., et al. (2008). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 13(2), 141–152.

    Article  CAS  PubMed  Google Scholar 

  81. Dydensborg, A. B., Rose, A. A., Wilson, B. J., Grote, D., Paquet, M., Giguère, V., et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene, 28(29), 2634–2642.

    Article  CAS  PubMed  Google Scholar 

  82. Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., et al. (2006). p63 is upstream of IKK alpha in epidermal development. Journal of Cell Science, 119(Pt 22), 4617–4622.

    Article  CAS  PubMed  Google Scholar 

  83. Descargues, P., Sil, A. K., & Karin, M. (2008). IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. The EMBO Journal, 27(20), 2639–2647.

    Article  CAS  PubMed  Google Scholar 

  84. Marinari, B., Ballaro, C., Koster, M. I., Giustizieri, M. L., Moretti, F., Crosti, F., et al. (2009). IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. The Journal of Investigative Dermatology, 129(1), 60–69.

    Article  CAS  PubMed  Google Scholar 

  85. Koster, M. I., Dai, D., Marinari, B., Sano, Y., Costanzo, A., Karin, M., et al. (2007). p63 induces key target genes required for epidermal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3255–3260.

    Article  CAS  PubMed  Google Scholar 

  86. Beretta, C., Chiarelli, A., Testoni, B., Mantovani, R., & Guerrini, L. (2005). Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle, 11, 1625–1631.

    Google Scholar 

  87. Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 6, 551–561.

    Article  CAS  Google Scholar 

  88. Sato, K., Tomizawa, Y., Iijima, H., Saito, R., Ishizuka, T., Nakajima, T., et al. (2006). Epigenetic inactivation of the RUNX3 gene in lung cancer. Oncology Reports, 15(1), 129–135.

    CAS  PubMed  Google Scholar 

  89. Zamisch, M., Tian, L., Grenningloh, R., Xiong, Y., Wildt, K. F., Ehlers, M., et al. (2009). The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. The Journal of Experimental Medicine, 206(12), 2685–2699.

    Article  CAS  PubMed  Google Scholar 

  90. Lee, K. S., Lee, Y. S., Lee, J. M., Ito, K., Cinghu, S., Kim, J. H., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 29(23), 3349–3361.

    Article  CAS  PubMed  Google Scholar 

  91. Chang, T. L., Ito, K., Ko, T. K., Liu, Q., Salto-Tellez, M., Yeoh, K. G., et al. (2010). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology, 138(1), 255–265. e1–3.

    Article  CAS  PubMed  Google Scholar 

  92. Lopardo, T., Lo Iacono, N., Marinari, B., Giustizieri, M. L., Cyr, D. G., Merlo, G., et al. (2008). Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE, 3(7), e2715.

    Article  PubMed  CAS  Google Scholar 

  93. Chao, Y. C., Pan, S. H., Yang, S. C., Yu, S. L., Che, T. F., Lin, C. W., et al. (2009). Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 179(2), 123–133.

    Article  CAS  PubMed  Google Scholar 

  94. Berger, A. H., Niki, M., Morotti, A., Taylor, B. S., Socci, N. D., Viale, A., et al. (2010). Identification of DOK genes as lung tumor suppressors. Nature Genetics, 42(3), 216–223.

    Article  CAS  PubMed  Google Scholar 

  95. Niki, M., Di Cristofano, A., Zhao, M., Honda, H., Hirai, H., Van Aelst, L., et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. The Journal of Experimental Medicine, 200(12), 1689–1695.

    Article  CAS  PubMed  Google Scholar 

  96. Wu, G., Nomoto, S., Hoque, M. O., Dracheva, T., Osada, M., Lee, C. C., et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Research, 63(10), 2351–2357.

    CAS  PubMed  Google Scholar 

  97. Zamò, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., & Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Modern Pathology, 18(11), 1448–1453.

    Article  PubMed  CAS  Google Scholar 

  98. Pruneri, G., Fabris, S., Dell’Orto, P., Biasi, M. O., Valentini, S., Del Curto, B., et al. (2005). The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. The Journal of Pathology, 206(3), 337–345.

    Article  CAS  PubMed  Google Scholar 

  99. Nicolas, M., Koster, M. I., Lu, S. L., White, L. D., Wang, X. J., & Roop, D. R. (2006). Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Research, 66(8), 3981–3986.

    Article  Google Scholar 

  100. Sasaki, Y., Ishida, S., Morimoto, I., Yamashita, T., Kojima, T., Kihara, C., et al. (2002). The p53 family member genes are involved in the Notch signal pathway. The Journal of Biological Chemistry, 277(1), 719–724.

    Article  CAS  PubMed  Google Scholar 

  101. Shimomura, Y., Wajid, M., Shapiro, L., & Christiano, A. M. (2008). P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development, 135(4), 743–753.

    Article  CAS  PubMed  Google Scholar 

  102. Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., et al. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65(8), 3092–3099.

    CAS  PubMed  Google Scholar 

  103. Bui, T., Sequeira, J., Wen, T. C., Sola, A., Higashi, Y., Kondoh, H., et al. (2009). ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE, 4(2), e4373. PLoS One. 4(8):e6816.

    Article  PubMed  CAS  Google Scholar 

  104. Nicolas, M., Wolfer, A., Raj, K., Kummer, J. A., Mill, P., van Noort, M., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33(3), 416–421.

    Article  CAS  PubMed  Google Scholar 

  105. Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. P., 4th, Silverman, L. B., Sanchez-Irizarry, C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306(5694), 269–271.

    Article  CAS  PubMed  Google Scholar 

  106. Lefort, K., Mandinova, A., Ostano, P., Kolev, V., Calpini, V., Kolfschoten, I., et al. (2007). Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes & Development, 21(5), 562–577.

    Article  CAS  Google Scholar 

  107. Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE, 4(8), e6816.

    Article  PubMed  CAS  Google Scholar 

  108. Yugawa, T., Narisawa-Saito, M., Yoshimatsu, Y., Haga, K., Ohno, S., Egawa, N., et al. (2010). DeltaNp63alpha repression of the Notch1 gene supports the proliferative capacity of normal human keratinocytes and cervical cancer cells. Cancer Research, 70(10), 4034–4044.

    Article  CAS  PubMed  Google Scholar 

  109. Dotto, G. P. (2009). Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Reviews. Cancer, 8, 587–595.

    Article  CAS  Google Scholar 

  110. Schwamborn, J. C., Berezikov, E., & Knoblich, J. A. (2009). The TRIM-NHL protein TRIM32 activates miRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5), 913–925.

    Article  CAS  PubMed  Google Scholar 

  111. Loedige, I., & Filipowicz, W. (2009). TRIM-NHL proteins take on miRNA regulation. Cell, 136(5), 818–820.

    Article  CAS  PubMed  Google Scholar 

  112. Boominathan, L. (2009). Tumor suppressors function as a bottleneck against cellular reprogramming into iPS cells. Nature Precedings http://dx.doi.org/10.1038/npre.2009.4113.1.

  113. Boominathan, L. (2010). The tumor suppressors p53, p63 and p73 are regulators of miRNA processing complex. PLoS ONE, 5(5), e10615.

    Article  PubMed  CAS  Google Scholar 

  114. Viganò, M. A., Lamartine, J., Testoni, B., Merico, D., Alotto, D., Castagnoli, C., et al. (2006). New p63 targets in keratinocytes identified by a genome-wide approach. The EMBO Journal, 25(21), 5105–5116.

    Article  PubMed  CAS  Google Scholar 

  115. Lee, M., & Vasioukhin, V. (2008). Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. Journal of Cell Science, 121(Pt 8), 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  116. Wodarz, A., & Gonzalez, C. (2006). Connecting cancer to the asymmetric division of stem cells. Cell, 124(6), 1121–1123.

    Article  CAS  PubMed  Google Scholar 

  117. Boominathan, L. (2010) The TA-p73 functions as a Lung tumor suppressor by increasing the expression of miRNA, let-7. Nature Precedings http://dx.doi.org/10.1038/npre.2010.4252.1>.

  118. Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., et al. (2007). Differential regulation of miRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6(13), 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  119. Rosenbluth, J. M., Mays, D. J., Pino, M. F., Tang, L. J., & Pietenpol, J. A. (2008). A gene signature-based approach identifies mTOR as a regulator of p73. Molecular and Cellular Biology, 19, 5951–5964.

    Article  Google Scholar 

  120. Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 miRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3903–3908.

    Article  CAS  PubMed  Google Scholar 

  121. Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 miRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.

    Article  CAS  PubMed  Google Scholar 

  122. Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 miRNAs in human lung cancers in association with shortened postoperative surviva. Cancer Research, 64(11), 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  123. Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., & Kelnar, K. (2007). The let-7 miRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.

    Article  CAS  PubMed  Google Scholar 

  124. Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N. J., et al. (2008). Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology, 10(7), 825–836.

    Article  CAS  PubMed  Google Scholar 

  125. Bearzatto, A., Conte, D., Frattini, M., Zaffaroni, N., Andriani, F., et al. (2002). p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clinical Cancer Research, 8(12), 3782–3787.

    CAS  PubMed  Google Scholar 

  126. Seike, M., Gemma, A., Hosoya, Y., Hemmi, S., Taniguchi, Y., et al. (2000). Increase in the frequency of p16INK4 gene inactivation by hypermethylation in lung cancer during the process of metastasis and its relation to the status of p53. Clinical Cancer Research, 6(11), 4307–4313.

    CAS  PubMed  Google Scholar 

  127. Lee, H. (2003). Impaired phosphorylation and mis-localization of Bub1 and BubR1 are responsible for the defective mitotic checkpoint function in Brca2-mutant thymic lymphomas. Experimental & Molecular Medicine, 35(5), 448–453.

    CAS  Google Scholar 

  128. Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D., et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature, 446(7137), 758–764.

    Article  CAS  PubMed  Google Scholar 

  129. Yang, A., Zhu, Z., Kapranov, P., McKeon, F., Church, G. M., Gingeras, T. R., et al. (2006). Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Molecular Cell, 24(4), 593–602.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, J., Jun Cho, S., & Chen, X. (2010). RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9614–9619.

    Article  CAS  PubMed  Google Scholar 

  131. Boominathan, L. (2006) Role of c-Jun in the regulation of the tumor suppressor p53 homologue, p73. Ph.D thesis, National University of Singapore, https://scholarbank.nus.edu.sg/handle/10635/15006.

  132. Lena, A. M., Shalom-Feuerstein, R., Rivetti di Val Cervo, P., Aberdam, D., Knight, R. A., Melino, G., et al. (2008). miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death and Differentiation, 15(7), 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  133. Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 464(7287), 374–379.

    Article  CAS  PubMed  Google Scholar 

  134. Chan, C. H., Lee, S. W., Li, C. F., Wang, J., Yang, W. L., Wu, C. Y., et al. (2010). Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 12(5), 457–467.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, S., Tang, Q., Xu, F., Xue, Y., Zhen, Z., Deng, Y., et al. (2009). RhoA regulates G1-S progression of gastric cancer cells by modulation of multiple INK4 family tumor suppressors. Molecular Cancer Research, 7(4), 570–580.

    Article  CAS  PubMed  Google Scholar 

  136. Tedesco, D., Lukas, J., & Reed, S. I. (2002). The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes & Development, 16(22), 2946–2957.

    Article  CAS  Google Scholar 

  137. Kitagawa, M., Lee, S. H., & McCormick, F. (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Molecular Cell, 29(2), 217–231.

    Article  CAS  PubMed  Google Scholar 

  138. Belletti, B., Nicoloso, M. S., Schiappacassi, M., Berton, S., Lovat, F., Wolf, K., et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Molecular Biology of the Cell, 19(5), 2003–2013.

    Article  CAS  PubMed  Google Scholar 

  139. Keller, U. B., Old, J. B., Dorsey, F. C., Nilsson, J. A., Nilsson, L., MacLean, K. H., et al. (2007). Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. The EMBO Journal, 26(10), 2562–2574.

    Article  CAS  PubMed  Google Scholar 

  140. Schaffer, B. E., Park, K. S., Yiu, G., Conklin, J. F., Lin, C., Burkhart, D. L., et al. (2010). Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Research, 70(10), 3877–3883.

    Article  CAS  PubMed  Google Scholar 

  141. Gonzalez, S., Klatt, P., Delgado, S., Conde, E., Lopez-Rios, F., Sanchez-Cespedes, M., et al. (2006). Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 440(7084), 702–706.

    Article  CAS  PubMed  Google Scholar 

  142. Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137(1), 87–98.

    Article  CAS  PubMed  Google Scholar 

  143. Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T., Toffanin, S., et al. (2009). Lin28 enhances tumorigenesis and is associated with advanced human malignancies. Nature Genetics, 41(7), 843–848.

    Article  CAS  PubMed  Google Scholar 

  144. Lee, Y. S., & Dutta, A. (2007). The tumor suppressor miRNA let-7 represses the HMGA2 oncogene. Genes & Development, 21(9), 1025–1030.

    Article  CAS  Google Scholar 

  145. Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2), 227–239.

    Article  CAS  PubMed  Google Scholar 

  146. Thuault, S., Tan, E. J., Peinado, H., Cano, A., Heldin, C. H., & Moustakas, A. (2008). HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. The Journal of Biological Chemistry, 283(48), 33437–33446.

    Article  CAS  PubMed  Google Scholar 

  147. Klanrit, P., Taebunpakul, P., Flinterman, M. B., Odell, E. W., Riaz, M. A., Melino, G., et al. (2009). PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene, 28(39), 3499–3512.

    Article  CAS  PubMed  Google Scholar 

  148. Peter, M. E. (2009). Let-7 and miR-200 miRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6), 843–852.

    CAS  PubMed  Google Scholar 

  149. Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., et al. (2008). Identification of let-7-regulated oncofetal genes. Cancer Research, 68(8), 2587–2591.

    Article  CAS  PubMed  Google Scholar 

  150. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  151. Mao, H. J., Perez-losada, J., Wu, J., DelRosario, R., Tsunematsu, R., Nakayama, K. I., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.

    Article  CAS  PubMed  Google Scholar 

  152. Sim, K. G., Zang, Z., Yang, C. M., Bonventre, J. V., & Hsu, S. I. (2004). TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability. Cell Cycle, 3(10), 1296–1304.

    CAS  PubMed  Google Scholar 

  153. Welcker, W., Orian, A., Jin, J., Grim, J. A., Harper, J. W., Eisenman, R. N., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9085–9090.

    Article  CAS  PubMed  Google Scholar 

  154. Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I. M., Nakayama, K., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204(12), 2875–2888.

    Article  CAS  PubMed  Google Scholar 

  155. Matsuoka, S., Oike, Y., Onoyama, I., Iwama, A., Arai, F., & Takubo, K. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22(8), 986–991.

    Article  CAS  Google Scholar 

  156. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., et al. (2009). p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3207–3212.

    Article  CAS  PubMed  Google Scholar 

  157. Liu, X., Sempere, L. F., Galimberti, F., Freemantle, S. J., Black, C., Dragnev, K. H., et al. (2009). Uncovering growth-suppressive MiRNAs in lung cancer. Clinical Cancer Research, 15(4), 1177–1183.

    Article  CAS  PubMed  Google Scholar 

  158. Yamasaki, L., Jacks, T., Bronson, R., Goillot, E., Harlow, E., & Dyson, N. J. (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell, 85(4), 537–548.

    Article  CAS  PubMed  Google Scholar 

  159. Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.

    Article  CAS  PubMed  Google Scholar 

  160. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A miRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.

    Article  CAS  PubMed  Google Scholar 

  161. Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene, 29(23), 3411–3422.

    Article  CAS  PubMed  Google Scholar 

  162. Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2), 217–222. Review.

    Article  CAS  PubMed  Google Scholar 

  163. Alimonti, A., Nardella, C., Chen, Z., Clohessy, J. G., Carracedo, A., Trotman, L. C., et al. (2010). A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. The Journal of Clinical Investigation, 120(3), 681–693.

    Article  CAS  PubMed  Google Scholar 

  164. Matsubara, H., Takeuchi, T., Nishikawa, E., Yanagisawa, K., Hayashita, Y., Ebi, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.

    Article  CAS  PubMed  Google Scholar 

  165. Morris, E. J., Ji, J. Y., Yang, F., Di Stefano, L., Herr, A., Moon, N. S., et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature, 455(7212), 552–556.

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, C., Blum, J., Chen, A., Kwon, H. Y., Jung, S. H., Cook, J. M., et al. (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 6, 528–541.

    Article  CAS  Google Scholar 

  167. Stuart, S. A., Minami, Y., & Wang, J. Y. (2009). The CML stem cell: evolution of the progenitor. Cell Cycle, 8(9), 1338–1343.

    CAS  PubMed  Google Scholar 

  168. Yan, H. L., Xue, G., Mei, Q., Wang, Y. Z., Ding, F. X., Liu, M. F., et al. (2009). Repression of the miR-17–92 cluster by p53 has an important function in hypoxia-induced apoptosis. The EMBO Journal, 28(18), 2719–2732.

    Article  CAS  PubMed  Google Scholar 

  169. Bueno, M. J., Gomez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signalling. Molecular and Cellular Biology, 12, 2983–2995.

    Article  CAS  Google Scholar 

  170. Mu, P., Han, Y. C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., et al. (2009). Genetic dissection of the miR-17 92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes & Development, 23(24), 2806–2811.

    Article  CAS  Google Scholar 

  171. Rempel, R. E., Mori, S., Gasparetto, M., Glozak, M. A., Andrechek, E. R., Adler, S. B., et al. (2009). A role for E2F activities in determining the fate of Myc-induced lymphomagenesis. PLoS Genetics, 5(9), e1000640.

    Article  PubMed  CAS  Google Scholar 

  172. Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread miRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  173. Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.

    Article  CAS  PubMed  Google Scholar 

  174. Watanabe, K., Ozaki, T., Nakagawa, T., Miyazaki, K., Takahashi, M., et al. (2002). Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. The Journal of Biological Chemistry, 277(17), 15113–15123.

    Article  CAS  PubMed  Google Scholar 

  175. Horvilleur, E., Bauer, M., Goldschneider, D., Mergui, X., de la Motte, A., et al. (2008). p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Research, 36(13), 4222–4232.

    Article  CAS  PubMed  Google Scholar 

  176. Giuriato, S., Ryeom, S., Fan, A. C., Bachireddy, P., Lynch, R. C., Rioth, M. J., et al. (2006). Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16266–16271.

    Article  CAS  PubMed  Google Scholar 

  177. Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MiRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15805–15810.

    Article  CAS  PubMed  Google Scholar 

  178. Garzon, R., Liu, S., Fabbri, M., Liu, Z., Heaphy, C. E., Callegari, E., et al. (2009). MiRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 113(25), 6411–6418.

    Article  CAS  PubMed  Google Scholar 

  179. Deneault, E., Cellot, S., Laverdure, F. A., JP, F. M., Chagraoui, J., et al. (2009). Functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 137(2), 369–379.

    Article  CAS  PubMed  Google Scholar 

  180. Wang, H., Garzon, R., Sun, H., Ladner, K. J., Singh, R., Dahlman, J., et al. (2008). NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell, 14(5), 369–381.

    Article  CAS  PubMed  Google Scholar 

  181. Park, Y., Lee, J. H., Ha, M., Nam, J. W., & Kim, V. N. (2009). miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology, 16(1), 23–29.

    Article  CAS  Google Scholar 

  182. Sinha, A. U., Kaimal, V., Chen, J., & Jegga, A. G. (2008). Dissecting microregulation of a master regulatory network. BMC Genomics, 9, 88.

    Article  PubMed  CAS  Google Scholar 

  183. Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., et al. (2008). A miRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.

    Article  CAS  PubMed  Google Scholar 

  184. Duursma, A. M., Kedde, M., Schrier, M., le Sage, C., & Agami, R. (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5), 872–877.

    Article  CAS  PubMed  Google Scholar 

  185. Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MiRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3432–3437.

    Article  CAS  PubMed  Google Scholar 

  186. Braun, C. J., Zhang, X., Savelyeva, I., Wolff, S., Moll, U. M., Schepeler, T., et al. (2008). p53-Responsive miRNAs 192 and 215 are capable of inducing cell cycle arrest. Cancer Research, 68(24), 1094–1104.

    Article  CAS  Google Scholar 

  187. Georges, S. A., Biery, M. C., Kim, S. Y., Schelter, J. M., Guo, J., Chang, A. N., et al. (2008). Coordinated regulation of cell cycle transcripts by p53-Inducible miRNAs, miR-192 and miR-215. Cancer Research, 68(24), 10105–10112.

    Article  CAS  PubMed  Google Scholar 

  188. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    Article  CAS  PubMed  Google Scholar 

  189. Bracken, C. P., Gregory, P. A., Kolesnikoff, N., Bert, A. G., Wang, J., Shannon, M. F., et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the miRNA-200 family regulates epithelial-mesenchymal transition. Cancer Research, 68(19), 7846–7854.

    Article  CAS  PubMed  Google Scholar 

  190. Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.

    Article  CAS  PubMed  Google Scholar 

  191. Sengupta, S., den Boon, J. A., Chen, I. H., Newton, M. A., Stanhope, S. A., Cheng, Y. J., et al. (2008). MiRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5874–5878.

    Article  CAS  PubMed  Google Scholar 

  192. Qin, L., Liao, L., Redmond, A., Young, L., Yuan, Y., Chen, H., et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Molecular and Cellular Biology, 19, 5937–5950.

    Article  CAS  Google Scholar 

  193. Zenz, T., Mohr, J., Eldering, E., Kater, A. P., Buhler, A., Kienle, D., et al. (2009). MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 113(16), 3801–3808.

    Article  CAS  PubMed  Google Scholar 

  194. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). miRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.

    Article  CAS  PubMed  Google Scholar 

  195. He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). miRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nature Reviews. Cancer, 7(11), 819–822. Review.

    Article  CAS  PubMed  Google Scholar 

  196. Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582(10), 1564–1568.

    Article  CAS  PubMed  Google Scholar 

  197. Aslanian, A., Iaquinta, P. J., Verona, R., & Lees, J. A. (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes & Development, 18(12), 1413–1422.

    Article  CAS  Google Scholar 

  198. Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J., Fan, D., et al. (2008). Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer, 8, 266.

    Article  PubMed  CAS  Google Scholar 

  199. Wang, S., Yuan, Y., Liao, L., Kuang, S. Q., Tien, J. C., O’Malley, B. W., et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proceedings of the National Academy of Sciences of the United States of America, 106(1), 151–156.

    Article  CAS  PubMed  Google Scholar 

  200. Qin, L., Liu, Z., Chen, H., & Xu, J. (2009). The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Research, 69(9), 3819–3827.

    Article  CAS  PubMed  Google Scholar 

  201. Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138(1), 51–62.

    Article  CAS  PubMed  Google Scholar 

  202. Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Natural Medicines, 14(11), 1271–1277.

    Article  CAS  Google Scholar 

  203. Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.

    Article  CAS  PubMed  Google Scholar 

  204. Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.

    Article  CAS  PubMed  Google Scholar 

  205. Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5166–5171.

    Article  CAS  PubMed  Google Scholar 

  206. Chatterjee, A., Chang, X., Sen, T., Ravi, R., Bedi, A., & Sidransky, D. (2010). Regulation of p53 family member isoform DeltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaB kinase beta. Cancer Research, 70(4), 1419–1429.

    Article  CAS  PubMed  Google Scholar 

  207. Boominathan, L. (2009) Curcumin functions a positive regulator of miRNA processing and a negative regulator of stem cell proliferation. Nature Precedings, http://dx.doi.org/10.1038/npre.2009.4110.1

  208. Dovey, J. S., Zacharek, S. J., Kim, C. F., & Lees, J. A. (2008). Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11857–11862.

    Article  CAS  PubMed  Google Scholar 

  209. Bueno, M. J., Gómez de Cedrón, M., Laresgoiti, U., Fernández-Piqueras, J., Zubiaga, A. M., & Malumbres, M. (2010). Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology, 30(12), 2983–2995.

    Article  CAS  PubMed  Google Scholar 

  210. Sander, S., Bullinger, L., Klapproth, K., Fiedler, K., Kestler, H. A., Barth, T. F., et al. (2008). MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood, 112(10), 4202–4212.

    Article  CAS  PubMed  Google Scholar 

  211. Sander, S., Bullinger, L., & Wirth, T. (2009). Repressing the repressor: a new mode of MYC action in lymphomagenesis. Cell Cycle, 8(4), 556–559.

    CAS  PubMed  Google Scholar 

  212. Fujii, S., & Ochiai, A. (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Science, 99(4), 738–746.

    Article  CAS  PubMed  Google Scholar 

  213. Fujii, S., Ito, K., Ito, Y., & Ochiai, A. (2008). Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of Biological Chemistry, 283(25), 17324–17332.

    Article  CAS  PubMed  Google Scholar 

  214. Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27(58), 7274–7284.

    Article  CAS  PubMed  Google Scholar 

  215. Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., & Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene, 26(31), 4590–4595.

    Article  CAS  PubMed  Google Scholar 

  216. Yang, X., Karuturi, R. K., Sun, F., Aau, M., Yu, K., Shao, R., et al. (2009). CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE, 4(4), e5011.

    Article  PubMed  CAS  Google Scholar 

  217. Ezhkova, E., Pasolli, H. A., Parker, J. S., Stokes, N., Su, I. H., Hannon, G., et al. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell, 136(6), 1122–1135.

    Article  CAS  PubMed  Google Scholar 

  218. Kota, J., Chivukula, R. R., O’Donnell, K. A., Wentzel, E. A., Montgomery, C. L., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.

    Article  CAS  PubMed  Google Scholar 

  219. Friedman, J. M., Liang, G., Liu, C. C., Wolff, E. M., Tsai, Y. C., et al. (2009). The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Research, 69(6), 2623–2629.

    Article  CAS  PubMed  Google Scholar 

  220. Faber, J., Krivtsov, A. V., Stubbs, M. C., Wright, R., Davis, T. N., van den Heuvel-Eibrink, M., et al. (2009). HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood, 113(11), 2375–2385.

    Article  CAS  PubMed  Google Scholar 

  221. Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7(11), 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  222. Li, Y., Zhou, Z., & Chen, C. (2008). WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death and Differentiation, 15(12), 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  223. Yu, F., Deng, H., Yao, H., Liu, Q., Su, F., Song, E. (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene (in press)

  224. Braun, J., Hoang-Vu, C., Dralle, H., Hüttelmaier, S. (2010) Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene (in press)

  225. Chang, T. C., Wentzel, E. A., Kent, O. A., Ramachandran, K., Mullendore, M., Lee, K. H., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.

    Article  CAS  PubMed  Google Scholar 

  226. Kim, W. Y., Perera, S., Zhou, B., Carretero, J., Yeh, J. J., Heathcote, S. A., et al. (2009). HIF2alpha cooperates with RAS to promote lung tumorigenesis in mice. The Journal of Clinical Investigation, 119(8), 2160–2170.

    Article  CAS  PubMed  Google Scholar 

  227. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.

    Article  CAS  PubMed  Google Scholar 

  228. Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell, 129(3), 465–472. Review.

    Article  CAS  PubMed  Google Scholar 

  229. Gordan, J. D., & Simon, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current Opinion in Genetics & Development, 17(1), 71–77. Review.

    Article  CAS  Google Scholar 

  230. Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine, 8(1), 60–67. Review.

    Article  CAS  PubMed  Google Scholar 

  231. Jazdzewski, K., Murray, E. L., Franssila, K., Jarzab, B., Schoenberg, D. R., & de la Chapelle, A. (2008). Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7269–7274.

    Article  CAS  PubMed  Google Scholar 

  232. Jazdzewski, K., Liyanarachchi, S., Swierniak, M., Pachucki, J., Ringel, M. D., Jarzab, B., et al. (2009). Polymorphic mature miRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1502–1505.

    Article  CAS  PubMed  Google Scholar 

  233. Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.

    Article  CAS  PubMed  Google Scholar 

  234. Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  235. Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  236. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  CAS  PubMed  Google Scholar 

  237. Khew-Goodall, Y., & Goodall, G. J. (2010). Myc-modulated miR-9 makes more metastases. Nature Cell Biology, 12(3), 209–211.

    CAS  PubMed  Google Scholar 

  238. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated miRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.

    CAS  PubMed  Google Scholar 

  239. Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews. Cancer, 9(4), 253–264.

    Article  CAS  PubMed  Google Scholar 

  240. Kim, J. W., Mori, S., & Nevins, J. R. (2010). Myc-induced MicroRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Research, 70(12), 4820–4828.

    Article  CAS  PubMed  Google Scholar 

  241. Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498–509.

    Article  CAS  PubMed  Google Scholar 

  242. Fornari, F., Gramantieri, L., Ferracin, M., Veronese, A., Sabbioni, S., Calin, G. A., et al. (2008). MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene, 27(43), 5651–5661.

    Article  CAS  PubMed  Google Scholar 

  243. Wu, C. H., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13028–13033.

    Article  CAS  PubMed  Google Scholar 

  244. Guney, I., Wu, S., & Sedivy, J. M. (2006). Reduced c-Myc signaling triggers telomere independent senescence by regulating Bmi-1 and p16(INK4a). Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3645–3650.

    Article  CAS  PubMed  Google Scholar 

  245. Nemajerova, A., Petrenko, O., Trümper, L., Palacios, G., & Moll, U. M. (2010). Loss of p73 promotes dissemination of Myc-induced B cell lymphomas in mice. The Journal of Clinical Investigation, 120(6), 2070–2080.

    Article  CAS  PubMed  Google Scholar 

  246. Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 455(7216), 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  247. Liu, X., Karnell, JL., Yin, B., Zhang, R., Zhang, J., Li, P., et al. (2010) Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest (in press)

  248. Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 453(7194), 529–533.

    Article  CAS  PubMed  Google Scholar 

  249. Yanagi, S., Kishimoto, H., Kawahara, K., Sasaki, T., Sasaki, M., Nishio, M., et al. (2007). Pten controls lung morphogenesis, bronchioalveolar stem cells, and onset of lung adenocarcinomas in mice. The Journal of Clinical Investigation, 117(10), 2929–2940.

    Article  CAS  PubMed  Google Scholar 

  250. Du, L., & Pertsemlidis, A. (2010). microRNAs and lung cancer: tumors and 22-mers. Cancer and Metastasis Reviews, 29(1), 109–122. Review.

    Article  CAS  PubMed  Google Scholar 

  251. Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4(2), 24952.

    Google Scholar 

  252. Nicholson, S. A., Okby, N. T., Khan, M. A., Welsh, J. A., McMenamin, M. G., Travis, W. D., et al. (2001). Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Research, 61(14), 5636–5643.

    CAS  PubMed  Google Scholar 

  253. Inoue, K., Mallakin, A., & Frazier, D. P. (2007). Dmp1 and tumor suppression. Oncogene, 26(30), 4329–4335. Review.

    Article  CAS  PubMed  Google Scholar 

  254. Mallakin, A., Sugiyama, T., Taneja, P., Matise, L. A., Frazier, D. P., Choudhary, M., et al. (2007). Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell, 12(4), 381–394.

    Article  CAS  PubMed  Google Scholar 

  255. Inoue, K., Sugiyama, T., Taneja, P., Morgan, R. L., & Frazier, D. P. (2008). Emerging roles of DMP1 in lung cancer. Cancer Research, 68(12), 4487–4490. Review.

    Article  CAS  PubMed  Google Scholar 

  256. Malone, & Hannon. (2009). Small RNAs as guardians of the genome. Cell, 136, 656–668.

    Article  CAS  PubMed  Google Scholar 

  257. Xi, Y., Shalgi, R., Fodstad, O., Pilpel, Y., & Ju, J. (2006). Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clinical Cancer Research, 12(7 Pt 1), 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  258. Theurkauf, W. E., Klattenhoff, C., Bratu, D. P., McGinnis-Schultz, N., Koppetsch, B. S., & Cook, H. A. (2006). rasiRNAs, DNA damage, and embryonic axis specification. Cold Spring Harbor Symposia on Quantitative Biology, 71, 171–180.

    Article  CAS  PubMed  Google Scholar 

  259. Kutter, C., & Svoboda, P. (2008). miRNA, siRNA, piRNA: knowns of the unknown. RNA Biology, 5(4), 181–188.

    CAS  PubMed  Google Scholar 

  260. Boominathan, L. (2009). The guardians of the genome dependent tumor suppressor miRNAs network Nature Precedings, http://dx.doi.org/10.1038/npre.2009.4112.1

Download references

Acknowledgments

Dr. Lakshmanane Boominathan, Ph.D. is the founding Director-cum-senior scientist of the Genome Discovery, Puducherry, India. He devotes this article to his Professors [from the National University of Singapore; The Weizmann Institute of Science; Jawaharlal Institute of Post-graduate Medical Education and Research; Pondicherry Central University, India] who have played a significant role in his career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmanane Boominathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boominathan, L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 29, 613–639 (2010). https://doi.org/10.1007/s10555-010-9257-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9257-9

Keywords

Navigation