Skip to main content

Advertisement

Log in

Clinging to life: cell to matrix adhesion and cell survival

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cell to matrix adhesion regulates cellular homeostasis in multiple ways. Integrin attachment to the extracellular matrix mediates this regulation through direct and indirect connections to the actin cytoskeleton, growth factor receptors, and intracellular signal transduction cascades. Disruption of this connection to the extracellular matrix has deleterious effects on cell survival. It leads to a specific type of apoptosis known as anoikis in most non-transformed cell types. Anchorage independent growth is a critical step in the tumorigenic transformation of cells. Thus, breaching the anoikis barrier disrupts the cell's defenses against transformation. This review examines recent investigations into the molecular mechanisms of anoikis to illustrate current understanding of this important process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz MA, Assoian RK: Integrins and cell proliferation: Regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553–2560, 2001

    PubMed  Google Scholar 

  2. Giancotti FG, Tarone G: Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 19: 173–206, 2003

    Article  PubMed  Google Scholar 

  3. Howe AK, Aplin AE, Juliano RL: Anchorage-dependent erk signaling–mechanisms and consequences. Curr Opin Genet Dev 12: 30–35, 2002

    Article  PubMed  Google Scholar 

  4. Juliano RL: Signal transduction by cell adhesion receptors and the cytoskeleton: Functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42: 283–323, 2002

    Article  PubMed  Google Scholar 

  5. Grossmann J: Molecular mechanisms of “detachment-induced apoptosis–anoikis”. Apoptosis 7: 247–260, 2002

    Article  PubMed  Google Scholar 

  6. Stupack DG, Cheresh DA: Get a ligand, get a life: Integrins, signaling and cell survival. J Cell Sci 115: 3729–3738, 2002

    Article  PubMed  Google Scholar 

  7. Alahari SK, Reddig PJ, Juliano RL: Biological aspects of signal transduction by cell adhesion receptors. Int Rev Cytol 220: 145–184, 2002

    PubMed  Google Scholar 

  8. Martin SS, Vuori K: Regulation of Bcl-2 proteins during anoikis and amorphosis. Biochim Biophys Acta 1692: 145–157, 2004

    PubMed  Google Scholar 

  9. Boatright KM, Salvesen GS: Mechanisms of caspase activation. Curr Opin Cell Biol 15: 725–731, 2003

    Article  PubMed  Google Scholar 

  10. Cory S, Huang DC, Adams JM: The Bcl-2 family: Roles in cell survival and oncogenesis. Oncogene 22: 8590–8607, 2003

    PubMed  Google Scholar 

  11. Danial NN, Korsmeyer SJ: Cell death: Critical control points. Cell 116: 205–219, 2004

    Article  PubMed  Google Scholar 

  12. Salvesen GS, Abrams JM: Caspase activation—stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23: 2774–2784, 2004

    Article  PubMed  Google Scholar 

  13. Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell 9: 459–470, 2002

    Article  PubMed  Google Scholar 

  14. Adams JM, Cory S: Apoptosomes: Engines for caspase activation. Curr Opin Cell Biol 14: 715–720, 2002

    Article  PubMed  Google Scholar 

  15. Shi Y: Caspase activation: Revisiting the induced proximity model. Cell 117: 855–858, 2004

    Article  PubMed  Google Scholar 

  16. Ozoren N, El-Deiry WS: Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13: 135–147, 2003

    Article  PubMed  Google Scholar 

  17. Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science 305: 626–629, 2004

    Article  PubMed  Google Scholar 

  18. Cory S, Adams JM: The BCL2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656, 2002

    Article  PubMed  Google Scholar 

  19. Altieri DC: The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends in Molecular Medicine 7: 542–547, 2001

    Article  PubMed  Google Scholar 

  20. Frisch SM, Francis H: Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619–626, 1994

    Article  PubMed  Google Scholar 

  21. Puthalakath H, Huang DCS, O'Reilly LA, King SM, Strasser A: The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular Cell 3: 287–296, 1999

    Article  PubMed  Google Scholar 

  22. Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE, Huang DC, Strasser A: Bmf: A proapoptotic BH3-only protein regulated by interaction with the myosin v actin motor complex, activated by anoikis. Science 293: 1829–1832, 2001

    Article  PubMed  Google Scholar 

  23. Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E: The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 11: 1103–1112, 2000

    PubMed  Google Scholar 

  24. Schulze A, Lehmann K, Jefferies HBJ, McMahon M, Downward J: Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 15: 981–994, 2001

    Article  PubMed  Google Scholar 

  25. Ley R, Ewings KE, Hadfield K, Howes E, Balmanno K, Cook SJ: Extracellular signal-regulated kinases 1/2 are serum-stimulated “BimEL kinases” that bind to the BH3-only protein bimel causing its phosphorylation and turnover. J Biol Chem 279: 8837–8847, 2004

    Article  PubMed  Google Scholar 

  26. Biswas SC, Greene LA: Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein bim and suppresses its proapoptotic activity by phosphorylation. J Biol Chem 277: 49511–49516, 2002

    Article  PubMed  Google Scholar 

  27. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, Muthuswamy SK, Brugge JS: Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5: 733–740, 2003

    Article  PubMed  Google Scholar 

  28. Marani M, Hancock D, Lopes R, Tenev T, Downward J, Lemoine NR: Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 23: 2431–2441, 2004

    Article  PubMed  Google Scholar 

  29. Wang P, Gilmore AP, Streuli CH: Bim is an apoptosis sensor that responds to loss of survival signals delivered by epidermal growth factor but not those provided by integrins. J Biol Chem 279: 41280–41285, 2004

    Article  PubMed  Google Scholar 

  30. Wang P, Valentijn AJ, Gilmore AP, Streuli CH: Early events in the anoikis program occur in the absence of caspase activation. J Biol Chem 278: 19917–19925, 2003

    Article  PubMed  Google Scholar 

  31. Gilmore AP, Metcalfe AD, Romer LH, Streuli CH: Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 149: 431–446, 2000

    Article  PubMed  Google Scholar 

  32. Valentijn AJ, Metcalfe AD, Kott J, Streuli CH, Gilmore AP: Spatial and temporal changes in Bax subcellular localization during anoikis. J Cell Biol 162: 599–612, 2003

    Article  PubMed  Google Scholar 

  33. Rytomaa M, Martins LM, Downward J: Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol 9: 1043–1046, 1999

    Article  PubMed  Google Scholar 

  34. Rytomaa M, Lehmann K, Downward J: Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: Inhibition by PKB/Akt but not Raf signalling. Oncogene 19: 4461–4468, 2000

    Article  PubMed  Google Scholar 

  35. Frisch SM: Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Current Biology 9: 1047–1049, 1999

    Article  PubMed  Google Scholar 

  36. Valentijn AJ, Gilmore AP: Translocation of full-length Bid to mitochondria during anoikis. J Biol Chem 279: 32848–32857, 2004

    Article  PubMed  Google Scholar 

  37. Matter ML, Ruoslahti E: A signaling pathway from the α5β1 and αvβ3 integrins that elevates Bcl-2 transcription. J Biol Chem 276: 27757–27763, 2001

    Article  PubMed  Google Scholar 

  38. Zhang Z, Vuori K, Reed JC, Ruoslahti E: The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proceedings Of The PNAS Of The United States Of America 92: 6161–6165, 1995

    Google Scholar 

  39. Jan Y, Matter M, Pai JT, Chen YL, Pilch J, Komatsu M, Ong E, Fukuda M, Ruoslahti E: A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and groucho/tle corepressors. Cell 116: 751–762, 2004

    Article  PubMed  Google Scholar 

  40. Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling 14: 381–395, 2002

    Article  PubMed  Google Scholar 

  41. Pankov R, Cukierman E, Clark K, Matsumoto K, Hahn C, Poulin B, Yamada KM: Specific β1 integrin site selectively regulates Akt/protein kinase B signaling via local activation of protein phosphatase 2A. J Biol Chem 278: 18671–18681, 2003

    Article  PubMed  Google Scholar 

  42. Janes SM, Watt FM: Switch from α vβ 5 to α vβ 6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 166: 419–431, 2004

    Article  PubMed  Google Scholar 

  43. Miyazaki T, Shen M, Fujikura D, Tosa N, Kon S, Uede T, Reed JC: Functional role of death associated protein 3 (DAP3) in anoikis. J Biol Chem 2004

  44. Fornaro M, Plescia J, Chheang S, Tallini G, Zhu YM, King M, Altieri DC, Languino LR: Fibronectin protects prostate cancer cells from tumor necrosis factor-α-induced apoptosis via the Akt/survivin pathway. J Biol Chem 278: 50402–50411, 2003

    Article  PubMed  Google Scholar 

  45. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS: Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430: 1034–1039, 2004

    Article  PubMed  Google Scholar 

  46. Dufour G, Demers MJ, Gagne D, Dydensborg AB, Teller IC, Bouchard V, Degongre I, Beaulieu JF, Cheng JQ, Fujita N, Tsuruo T, Vallee K, Vachon PH: Human intestinal epithelial cell survival and anoikis: Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem 279: 44113–44122, 2004

    Article  PubMed  Google Scholar 

  47. Eckert LB, Repasky GA, Ulku AS, McFall A, Zhou H, Sartor CI, Der CJ: Involvement of ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res 64: 4585–4592, 2004

    Article  PubMed  Google Scholar 

  48. Wu C and Dedhar S: Integrin-linked kinase (ILK) and its interactors: A new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155: 505–510, 2001

    Article  PubMed  Google Scholar 

  49. Hill MM, Feng J, Hemmings BA: Identification of a plasma membrane raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Current Biology 12: 1251–1255, 2002

    Article  PubMed  Google Scholar 

  50. Troussard AA, Mawji NM, Ong C, Mui A, St-Arnaud R, Dedhar S: Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278: 22374–22378, 2003

    Article  PubMed  Google Scholar 

  51. Nikolopoulos SN, Turner CE: Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol 151: 1435–1448, 2000

    Article  PubMed  Google Scholar 

  52. Nikolopoulos SN, Turner CE: Molecular dissection of actopaxin-integrin-linked kinase-paxillin interactions and their role in subcellular localization. J Biol Chem 277: 1568–1575, 2002

    Article  PubMed  Google Scholar 

  53. Tu Y, Huang Y, Zhang Y, Hua Y, Wu C: A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol 153: 585–598, 2001

    Article  PubMed  Google Scholar 

  54. Fukuda T, Guo L, Shi X, Wu C: CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J Cell Biol 160: 1001–1008, 2003

    Article  PubMed  Google Scholar 

  55. Fukuda T, Chen K, Shi X, Wu C: PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem 278: 51324–51333, 2003

    Article  PubMed  Google Scholar 

  56. Abbi S, Guan JL: Focal adhesion kinase: Protein interactions and cellular functions. Histol Histopathol 17: 1163–1171, 2002

    PubMed  Google Scholar 

  57. Kurenova E, Xu LH, Yang X, Baldwin AS, Jr., Craven RJ, Hanks SK, Liu ZG, Cance WG: Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 24: 4361–4371, 2004

    Article  PubMed  Google Scholar 

  58. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV: TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387–396, 1996

    Article  PubMed  Google Scholar 

  59. Stanger BZ, Leder P, Lee TH, Kim E, Seed B: RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523, 1995

    Article  PubMed  Google Scholar 

  60. Burridge K, Mangeat P: An interaction between vinculin and talin. Nature 308: 744–746, 1984

    Article  PubMed  Google Scholar 

  61. Johnson RP, Craig SW: An intramolecular association between the head and tail domains of vinculin modulates talin binding. J Biol Chem 269: 12611–12619, 1994

    PubMed  Google Scholar 

  62. Johnson RP, Craig SW: F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373: 261–264, 1995

    Article  PubMed  Google Scholar 

  63. Kroemker M, Rudiger AH, Jockusch BM, Rudiger M: Intramolecular interactions in vinculin control α-actinin binding to the vinculin head. FEBS Lett 355: 259–262, 1994

    Article  PubMed  Google Scholar 

  64. Tumbarello DA, Brown MC, Turner CE: The paxillin LD motifs. FEBS Lett 513: 114–118, 2002

    Article  PubMed  Google Scholar 

  65. Coll J, Ben-Ze'ev A, Ezzell R, Fernandez J, Baribault H, Oshima R, Adamson E: Targeted disruption of vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion, and locomotion. PNAS 92: 9161–9165, 1995

    PubMed  Google Scholar 

  66. Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM: Vinculin modulation of paxillin-fak interactions regulates erk to control survival and motility. J Cell Biol 165: 371–381, 2004

    Article  PubMed  Google Scholar 

  67. Widmann C, Gibson S, Johnson GL: Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273: 7141–7147, 1998

    Article  PubMed  Google Scholar 

  68. Shim SR, Kook S, Kim JI, Song WK: Degradation of focal adhesion proteins paxillin and p130Cas by caspases or calpains in apoptotic Rat-1 and L929 cells. Biochemical and Biophysical Research Communications 286: 601–608, 2001

    Article  PubMed  Google Scholar 

  69. Crouch DH, Fincham VJ, Frame MC: Targeted proteolysis of the focal adhesion kinase pp125 FAK during c-MYC-induced apoptosis is suppressed by integrin signalling. Oncogene 12: 2689–2696, 1996

    PubMed  Google Scholar 

  70. Kook S, Shim SR, Choi SJ, Ahnn J, Kim JI, Eom SH, Jung YK, Paik SG, Song WK: Caspase-mediated cleavage of p130cas in etoposide-induced apoptotic Rat-1 cells. Mol Biol Cell 11: 929–939, 2000

    PubMed  Google Scholar 

  71. Kim W, Kook S, Kim DJ, Teodorof C, Song WK: The 31-kDa caspase-generated cleavage product of p130Cas functions as a transcriptional repressor of E2A in apoptotic cells. J Biol Chem 279: 8333–8342, 2004

    Article  PubMed  Google Scholar 

  72. Wei L, Yang Y, Zhang X, Yu Q: Cleavage of p130Cas in anoikis. J Cell Biochem 91: 325–335, 2004

    Article  PubMed  Google Scholar 

  73. Wei L, Yang Y, Zhang X, Yu Q: Anchorage-independent phosphorylation of p130(Cas) protects lung adenocarcinoma cells from anoikis. J Cell Biochem 87: 439–449, 2002

    Article  PubMed  Google Scholar 

  74. O'Neill GM, Golemis EA: Proteolysis of the docking protein HEF1 and implications for focal adhesion dynamics. Mol Cell Biol 21: 5094–5108, 2001

    Article  PubMed  Google Scholar 

  75. Law SF, O'Neill GM, Fashena SJ, Einarson MB, Golemis EA: The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol Cell Biol 20: 5184–5195, 2000

    Article  PubMed  Google Scholar 

  76. Del Pozo MA, Kiosses WB, Alderson NB, Meller N, Hahn KM, Schwartz MA: Integrins regulate GTP-Rac localized effector interactions through dissociation of rho-gdi. Nat Cell Biol 4: 232–239, 2002

    Article  PubMed  Google Scholar 

  77. del Pozo MA, Price LS, Alderson NB, Ren XD, Schwartz MA: Adhesion to the extracellular matrix regulates the coupling of the small GTPase-Rac to its effector pak. EMBO J 19: 2008–2014, 2000

    Article  PubMed  Google Scholar 

  78. Coniglio SJ, Jou T-S, Symons M: Rac1 protects epithelial cells against anoikis. J Biol Chem 276: 28113–28120, 2001

    Article  PubMed  Google Scholar 

  79. Cheng TL, Symons M, Jou TS: Regulation of anoikis by Cdc42 and Rac1. Exp Cell Res 295: 497–511, 2004

    Article  PubMed  Google Scholar 

  80. Werner E, Werb Z: Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J Cell Biol 158: 357–368, 2002

    Article  PubMed  Google Scholar 

  81. Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 408: 307–310, 2000

    Article  PubMed  Google Scholar 

  82. Oren M: Decision making by p53: Life, death and cancer. Cell Death Differ 10: 431–442, 2003

    Article  PubMed  Google Scholar 

  83. Lewis JM, Truong TN, Schwartz MA: Integrins regulate the apoptotic response to DNA damage through modulation of p53. Proc Natl Acad Sci U S A 99: 3627–3632, 2002

    Article  PubMed  Google Scholar 

  84. Truong T, Sun G, Doorly M, Wang JY, Schwartz MA: Modulation of DNA damage-induced apoptosis by cell adhesion is independently mediated by p53 and c-Abl. Proc Natl Acad Sci USA 100: 10281–10286, 2003

    Article  PubMed  Google Scholar 

  85. Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F, Werb Z, Bissell MJ: β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2: 205–216, 2002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddig, P.J., Juliano, R.L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 24, 425–439 (2005). https://doi.org/10.1007/s10555-005-5134-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-5134-3

Keywords

Navigation