Skip to main content
Log in

Characterization of pulmonary arterial stiffness using cardiac MRI

  • Review
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Pulmonary arterial stiffness (PAS) is a pathologic hallmark of all types of pulmonary hypertension (PH). Cardiac MRI (CMR), a gold-standard imaging modality for the evaluation of pulmonary flow, biventricular morphology and function has been historically reserved for the longitudinal clinical follow-up, PH phenotyping purposes, right ventricular evaluation, and research purposes. Over the last two decades, numerous indices combining invasive catheterization and non-invasive CMR have been utilized to phenotype the character and severity of PAS in different types of PH and to assess its clinically prognostic potential with encouraging results. Many recent studies have demonstrated a strong role of CMR derived PAS markers in predicting long-term clinical outcomes and improving currently gold standard risk assessment provided by the REVEAL calculator. With the utilization of a machine learning strategies, strong diagnostic and prognostic performance of CMR reported in multicenter studies, and ability to detect PH at early stages, the non-invasive assessment of PAS is on verge of routine clinical utilization. In this review, we focus on appraising important CMR studies interrogating PAS over the last 20 years, describing the benefits and limitations of different PAS indices, and their pathophysiologic relevance to pulmonary vascular remodeling. We also discuss the role of CMR and PAS in clinical surveillance and phenotyping of PH, and the long-term future goal to utilize PAS as a biomarker to aid with more targeted therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schäfer M, Myers C, Brown RD et al (2016) Pulmonary arterial stiffness: toward a New Paradigm in Pulmonary arterial Hypertension pathophysiology and Assessment. Curr Hypertens Rep 18

  2. Vonk-Noordegraaf A, Haddad F, Chin KM et al (2013) Right heart adaptation to pulmonary arterial Hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–33

    Article  PubMed  Google Scholar 

  3. Hunter KS, Lee P, Lanning CJ et al (2008) Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than PVR alone ine Pediatric patients with Pulmonary Hypertension with Pulmonary Hypertension. Am Heart J 155:166–174

    Article  PubMed  Google Scholar 

  4. Lewis GD, Bossone E, Naeije R et al (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary Diseases. Circulation 128:1470–1479

    Article  PubMed  Google Scholar 

  5. Muthurangu V, Taylor A, Andriantsimiavona R et al (2004) Novel method of quantifying Pulmonary Vascular Resistance by Use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance Flow. Circulation 110:826–834

    Article  PubMed  Google Scholar 

  6. Schäfer M, Truong U, Browne P et al (2018) Measuring Flow hemodynamic indices and oxygen consumption in children with pulmonary Hypertension: a comparison of catheterization and phase-contrast MRI. Pediatr Cardiol 39:1268–1274

    Article  Google Scholar 

  7. Van Der Zwaan HB, Geleijnse ML, McGhie JS et al (2011) Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging. Eur J Echocardiogr 12:656–664

    Article  PubMed  Google Scholar 

  8. Geva T (2014) MRI is the Preferred Method for evaluating right ventricular size and function in patients with congenital Heart Disease. Circ Cardiovasc Imaging 7:190

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dyverfeldt P, Bissell M, Barker AJ et al (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schäfer M, Barker AJ, Kheyfets V et al (2017) Helicity and vorticity of pulmonary arterial Flow in patients with Pulmonary Hypertension: quantitative analysis of Flow formations. J Am Heart Assoc 6:e007010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kiely DG, Levin DL, Hassoun PM et al (2019) Statement on imaging and pulmonary Hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 9

  12. Dawes TJW, Gandhi A, de Marvao A et al (2016) Pulmonary artery stiffness is independently Associated with Right Ventricular Mass and function: a cardiac MR Imaging Study. Radiology 280:398–404

    Article  PubMed  Google Scholar 

  13. Sanz J, Kariisa M, Dellegrottaglie S et al (2009) Evaluation of pulmonary artery stiffness in pulmonary Hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–295

    Article  PubMed  Google Scholar 

  14. Swift AJ, Rajaram S, Condliffe R et al (2012) Pulmonary artery relative area change detects mild elevations in Pulmonary Vascular Resistance and predicts adverse outcome in Pulmonary Hypertension. Invest Radiol 47:571–577

    Article  PubMed  Google Scholar 

  15. Swift AJ, Rajaram S, Hurdman J et al (2013) Noninvasive estimation of pa pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the aspire registry. JACC Cardiovasc Imaging 6:1036–1047

    Article  PubMed  Google Scholar 

  16. Schäfer M, Wilson N, Ivy DD et al (2018) Noninvasive wave intensity analysis predicts functional worsening in children with pulmonary arterial Hypertension. Am J Physiol - Hear Circ Physiol 315:H968–H977

    Article  Google Scholar 

  17. Kang K-W, Chang H-J, Kim Y-J et al (2011) Cardiac magnetic resonance imaging-derived Pulmonary Artery Distensibility Index correlates with Pulmonary Artery stiffness and predicts functional capacity in patients with Pulmonary arterial Hypertension. Circ J 75:2244–2251

    Article  PubMed  Google Scholar 

  18. Gan CTJ, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial Hypertension. Chest 132:1906–1912

    Article  PubMed  Google Scholar 

  19. Reiter U, Kovacs G, Reiter C et al (2021) MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary Hypertension. Eur Radiol 31:1883–1893

    Article  PubMed  Google Scholar 

  20. Kräuter C, Reiter U, Kovacs G et al (2022) Automated vortical blood flow-based estimation of mean pulmonary arterial pressure from 4D flow MRI. Magn Reson Imaging 88:132–141

    Article  PubMed  Google Scholar 

  21. Kheyfets VO, Schafer M, Podgorski CA et al (2016) 4D magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary Hypertension. J Magn Reson Imaging 44:914–922

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quail MA, Knight DS, Steeden JA et al (2015) Noninvasive pulmonary artery wave intensity analysis in pulmonary Hypertension. AJP Hear Circ Physiol 308:H1603–H1611

    Article  Google Scholar 

  23. Lewis RA, Johns CS, Cogliano M et al (2020) Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial Hypertension. Am J Respir Crit Care Med 201:458–466

    Article  PubMed  PubMed Central  Google Scholar 

  24. Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertensionDeveloped by the task force for the diagnosis and treatment of pulmonary Hypertension of the European Society of Cardiology (ESC) and the European respiratory society (ERS). Eur Heart J 43:3618–3731

    Article  CAS  PubMed  Google Scholar 

  25. Cannon JE, Su L, Kiely DG et al (2016) Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the United Kingdom national cohort. Circulation 133:1761–1771

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schölzel BE, Post MC, van de Bruaene A et al (2015) Prediction of hemodynamic improvement after pulmonary endarterectomy in chronic thromboembolic pulmonary Hypertension using non-invasive imaging. Int J Cardiovasc Imaging 31:143–150

    Article  PubMed  Google Scholar 

  27. Mayer E, Jenkins D, Lindner J et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary Hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710

    Article  PubMed  Google Scholar 

  28. Rosenzweig EB, Abman SH, Adatia I et al (2019) Paediatric pulmonary arterial Hypertension: updates on definition, classification, diagnostics and management. Eur Respir J 53(1):1801916

    Article  PubMed  PubMed Central  Google Scholar 

  29. Swift AJ, Wild JM, Nagle SK et al (2014) Quantitative magnetic resonance imaging of pulmonary Hypertension: a practical approach to the current state of the art. J Thorac Imaging 29:68–79

    Article  PubMed  PubMed Central  Google Scholar 

  30. Backhaus SJ, Metschies G, Billing M et al (2021) Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. J Cardiovasc Magn Reson 23:60

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dorniak K, Heiberg E, Hellmann M et al (2016) Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry. BMC Cardiovasc Disord 16:110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thenappan T, Prins KW, Pritzker MR et al (2016) The critical role of pulmonary arterial compliance in pulmonary Hypertension. Ann Am Thorac Soc 13:276–284

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tan W, Madhavan K, Hunter KS et al (2014) Vascular stiffening in pulmonary Hypertension: cause or consequence? (2013 Grover Conference series). Pulm Circ 4:560–580

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler Echocardiography in the hemodynamic Assessment of Pulmonary Hypertension. Am J Respir Crit Care Med 179:615

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fisher MR, Criner GJ, Fishman AP et al (2007) Estimating pulmonary artery pressures by echocardiography in patients with Emphysema. Eur Respir J 30:914–921

    Article  CAS  PubMed  Google Scholar 

  36. Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120:992–1007

    Article  PubMed  Google Scholar 

  37. Thistlethwaite PA, Mo M, Madani MM et al (2002) Operative classification of thromboembolic Disease determines outcome after pulmonary endarterectomy. J Thorac Cardiovasc Surg 124:1203–1211

    Article  PubMed  Google Scholar 

  38. Chesler N, Wang Z (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary Hypertension. Pulm Circ 1:212

    Article  PubMed  PubMed Central  Google Scholar 

  39. Swift AJ, Rajaram S, Condliffe R et al (2012) Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary Hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson 14:1–10

    Article  Google Scholar 

  40. Stevens GR, Lala A, Sanz J et al (2009) Exercise performance in patients with pulmonary Hypertension linked to Cardiac magnetic resonance measures. J Hear Lung Transplant 28:899–905

    Article  Google Scholar 

  41. Stevens GR, Garcia-Alvarez A, Sahni S et al (2012) RV dysfunction in pulmonary Hypertension is independently related to pulmonary artery stiffness. JACC Cardiovasc Imaging 5:378–387

    Article  PubMed  Google Scholar 

  42. Ray JC, Burger C, Mergo P et al (2019) Pulmonary arterial stiffness assessed by cardiovascular magnetic resonance imaging is a predictor of mild pulmonary arterial Hypertension. Int J Cardiovasc Imaging 35:1881–1892

    Article  PubMed  Google Scholar 

  43. Johns CS, Kiely DG, Rajaram S et al (2019) Diagnosis of pulmonary Hypertension with cardiac MRI: derivation and validation of regression models. Radiology 290:61–68

    Article  PubMed  Google Scholar 

  44. Swift AJ, Capener D, Johns C et al (2017) Magnetic Resonance Imaging in the prognostic evaluation of patients with pulmonary arterial Hypertension. Am J Respir Crit Care Med 196(2):228–239

    Article  PubMed  PubMed Central  Google Scholar 

  45. Truong U, Fonseca B, Dunning J et al (2013) Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial Hypertension. J Cardiovasc Magn Reson 15:81

    Article  PubMed  PubMed Central  Google Scholar 

  46. Friesen RM, Schäfer M, Dunbar Ivy D et al (2019) Proximal pulmonary vascular stiffness as a prognostic factor in children with pulmonary arterial Hypertension. Eur Heart J Cardiovasc Imaging 20:209–217

    Article  PubMed  Google Scholar 

  47. Schäfer M, Ivy DD, Barker AJ et al (2016) Characterization of CMR-derived haemodynamic data in children with pulmonary arterial Hypertension. Eur Heart J Cardiovasc Imaging 18(4):424–431

    Google Scholar 

  48. Schäfer M, Ivy DD, Abman SH et al (2019) Differences in pulmonary arterial flow hemodynamics between children and adults with pulmonary arterial Hypertension as assessed by 4D-flow CMR studies. Am J Physiol Circ Physiol 316:H1091–H1104

    Article  Google Scholar 

  49. Ploegstra M-J, Arjaans S, Zijlstra WMH et al (2015) Clinical worsening as Composite Study End Point in Pediatric Pulmonary arterial Hypertension. Chest 148:655–666

    Article  PubMed  Google Scholar 

  50. Zijlstra WMH, Douwes JM, Rosenzweig EB et al (2014) Survival differences in pediatric pulmonary arterial Hypertension: clues to a better understanding of outcome and optimal treatment strategies. J Am Coll Cardiol 63:2159–2169

    Article  PubMed  Google Scholar 

  51. Zhong L, Leng S, Alabed S et al (2023) Pulmonary artery strain predicts prognosis in pulmonary arterial Hypertension. JACC Cardiovasc Imaging

  52. Guala A, Teixidó-Tura G, Rodríguez-Palomares J et al (2019) Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in Marfan Syndrome. Eur Heart J 40:2047–2055

    Article  PubMed  Google Scholar 

  53. Bell V, Mitchell WA, Sigurdsson S et al (2014) Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc 3:e001536

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wentland AL, Grist TM, Wieben O (2014) Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther 4:193–206

    PubMed  PubMed Central  Google Scholar 

  55. Chirinos JA, Segers P, Hughes T, Townsend R (2019) Large-artery stiffness in Health and Disease: JACC State-of-the-art review. J Am Coll Cardiol 74:1237–1263

    Article  PubMed  PubMed Central  Google Scholar 

  56. Agoston-Coldea L, Lupu S, Mocan T (2018) Pulmonary artery stiffness by Cardiac magnetic resonance imaging predicts major adverse Cardiovascular events in patients with Chronic Obstructive Pulmonary Disease. Sci Rep 8:1–11

    Article  ADS  CAS  Google Scholar 

  57. Weir-Mccall JR, Struthers AD, Lipworth BJ, Houston JG (2015) The role of pulmonary arterial stiffness in COPD. Respir Med 109:1381–1390

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oganesyan A, Hoffner-Heinike A, Barker AJ et al (2021) Abnormal pulmonary flow is associated with impaired right ventricular coupling in patients with COPD. Int J Cardiovasc Imaging 37:3039–3048

    Article  PubMed  Google Scholar 

  59. Segers P, Swillens A, Taelman L, Vierendeels J (2014) Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem. Physiol Meas 35:847–861

    Article  PubMed  Google Scholar 

  60. Segers P (2019) MRI-enabled noninvasive wave intensity analysis: an exciting tool for cardiovascular (patho)physiology research (in absence of local reflections). J Hypertens 37:287–289

    Article  CAS  PubMed  Google Scholar 

  61. Davies JE, Whinnett ZI, Francis DP et al (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Circ Physiol 290:H878–H885

    Article  CAS  Google Scholar 

  62. Schäfer M, Frank BS, Jacobsen R et al (2021) Patients with Fontan circulation have abnormal aortic wave propagation patterns: a wave intensity analysis study. Int J Cardiol 322:158–167

    Article  PubMed  Google Scholar 

  63. Kopeć G, Moertl D, Jankowski P et al (2013) Pulmonary artery pulse wave velocity in idiopathic pulmonary arterial Hypertension. Can J Cardiol 29:683–690

    Article  PubMed  Google Scholar 

  64. Ibrahim ESH, Shaffer JM, White RD (2011) Assessment of pulmonary artery stiffness using velocity-encoding magnetic resonance imaging: evaluation of techniques. Magn Reson Imaging 29:966–974

    Article  PubMed  Google Scholar 

  65. Weir-McCall JR, Liu-Shiu-Cheong PS, Struthers AD et al (2018) Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling. Eur Radiol 28:3464–3472

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schäfer M, Ivy DD, Nguyen K et al (2021) Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary Hypertension. Am J Physiol - Hear Circ Physiol 321:H242–H252

    Article  Google Scholar 

  67. Forouzan O, Warczytowa J, Wieben O et al (2015) Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson 17:109

    Article  PubMed  PubMed Central  Google Scholar 

  68. Forouzan O, Dinges E, Runo JR et al (2019) Exercise-induced changes in pulmonary artery stiffness in pulmonary Hypertension. Front Physiol 10:269

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beaudry RI, Samuel TJ, Wang J et al (2018) Exercise cardiac magnetic resonance imaging: a feasibility study and meta-analysis. Am J Physiol - Regul Integr Comp Physiol 315:R638–R645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schäfer M, Frank BS, Ivy DD et al (2021) Short-term effects of inhaled nitric oxide on right ventricular Flow Hemodynamics by 4-Dimensional-Flow magnetic resonance imaging in Children with Pulmonary arterial Hypertension. J Am Heart Assoc 10:e020548

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lau EMT, Abelson D, Dwyer N et al (2014) Assessment of ventriculo-arterial interaction in pulmonary arterial Hypertension using wave intensity analysis. Eur Respir J 43:1804–1807

    Article  PubMed  Google Scholar 

  72. Feng J, Khir AW (2010) Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech 43:455–462

    Article  CAS  PubMed  Google Scholar 

  73. Biglino G, Steeden JA, Baker C et al (2012) A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:1–9

    Article  Google Scholar 

  74. Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–188

    Article  PubMed  Google Scholar 

  75. Su J, Manisty C, Parker KH et al (2017) Wave intensity analysis provides novel insights into pulmonary arterial Hypertension and chronic thromboembolic pulmonary Hypertension. J Am Heart Assoc 6:1–15

    Article  CAS  Google Scholar 

  76. Kreitner K-F, Wirth GM, Krummenauer F et al (2013) Noninvasive Assessment of Pulmonary Hemodynamics in patients with chronic thromboembolic pulmonary Hypertension by high temporal resolution phase-contrast MRI: correlation with simultaneous invasive pressure recordings. Circ Cardiovasc Imaging 6:722–729

    Article  PubMed  Google Scholar 

  77. Su J, Hilberg O, Howard L et al (2016) A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis. Acta Physiol 218:239–249

    Article  CAS  Google Scholar 

  78. Hollander EH, Wang JJ, Dobson GM et al (2001) Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281:H895–902

    Article  CAS  PubMed  Google Scholar 

  79. Wustmann K, Constantine A, Davies JE et al (2021) Prognostic implications of pulmonary wave reflection and reservoir pressure in patients with pulmonary Hypertension. Int J Cardiol Congenit Hear Dis 5:100199

    Google Scholar 

  80. Glass A, McCall P, Arthur A et al (2023) Pulmonary artery wave reflection and right ventricular function after lung resection. Br J Anaesth 130:e128–e136

    Article  PubMed  Google Scholar 

  81. Lammers SR, Kao PH, Qi HJ et al (2008) Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol Heart Circ Physiol 295:H1451–H1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schäfer M, Kheyfets VO, Schroeder JD et al (2016) Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary Hypertension. Pulm Circ 6:37–45

    Article  PubMed  PubMed Central  Google Scholar 

  83. Odagiri K, Inui N, Hakamata A et al (2016) Non-invasive evaluation of pulmonary arterial blood flow and wall shear stress in pulmonary arterial Hypertension with 3D phase contrast magnetic resonance imaging. Springerplus 5:1–11

    Article  Google Scholar 

  84. Tang BT, Pickard SS, Chan FP et al (2014) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial Hypertension: an image – based, computational fluid dynamics study. Pulm Circ 2:470–476

    Article  Google Scholar 

  85. Reiter G, Reiter U, Kovacs G et al (2008) Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary Hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1:23–30

    Article  PubMed  Google Scholar 

  86. Barker AJ, Roldán-Alzate A, Entezari P et al (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial Hypertension: results from two institutions. Magn Reson Med 73:1904–1913

    Article  PubMed  Google Scholar 

  87. Li M, Stenmark KR, Shandas R et al (2011) Effects of Pathologic Flow on Pulmonary Artery. Sci York 46:561–571

    CAS  Google Scholar 

  88. Szulcek R, Happé CM, Rol N et al (2016) Delayed microvascular shear-adaptation in pulmonary arterial Hypertension: role of PECAM-1 cleavage. Am J Respir Crit Care Med 33:1–58

    Google Scholar 

  89. Fukumitsu M, Groeneveldt JA, Braams NJ et al (2022) When right ventricular pressure meets volume: the impact of arrival time of reflected waves on right ventricle load in pulmonary arterial Hypertension. J Physiol 600:2327–2344

    Article  CAS  PubMed  Google Scholar 

  90. Rajaram S, Swift AJ, Telfer A et al (2013) 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary Hypertension: results from the ASPIRE Registry. Thorax 68:677–678

    Article  PubMed  Google Scholar 

  91. Rajaram S, Swift AJ, Capener D et al (2012) Diagnostic accuracy of contrast-enhanced MR Angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary Hypertension. Eur Radiol 22:310–317

    Article  PubMed  Google Scholar 

  92. Braams NJ, van Leeuwen JW, Vonk Noordegraaf A et al (2021) Right ventricular adaptation to pressure-overload: differences between chronic thromboembolic pulmonary Hypertension and idiopathic pulmonary arterial Hypertension. J Hear Lung Transplant 40:458–466

    Article  Google Scholar 

  93. Heinrich M, Uder M, Tscholl D et al (2005) CT scan findings in Chronic Thromboembolic Pulmonary Hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy. Chest 127:1606–1613

    Article  PubMed  Google Scholar 

  94. Rahaghi FN, Ross JC, Agarwal M et al (2016) Pulmonary vascular morphology as an ima

  95. McInnis MC, Wang D, Donahoe L et al (2020) Importance of computed tomography in defining segmental Disease in chronic thromboembolic pulmonary Hypertension. ERJ Open Res 6:1–9

    Article  Google Scholar 

  96. van de Veerdonk MC, Marcus JT, Bogaard H-J et al (2014) State of the art: advanced imaging of the right ventricle and pulmonary circulation in humans (2013 Grover Conference series). Pulm Circ 4:158–168

    Article  PubMed  PubMed Central  Google Scholar 

  97. Czerner CP, Schoenfeld C, Cebotari S et al (2020) Perioperative CTEPH patient monitoring with 2D phase-contrast MRI reflects clinical, cardiac and pulmonary perfusion changes after pulmonary endarterectomy. PLoS ONE 15:e0238171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dong ML, Azarine A, Haddad F et al (2022) 4D flow cardiovascular magnetic resonance recovery profiles following pulmonary endarterectomy in chronic thromboembolic pulmonary Hypertension. J Cardiovasc Magn Reson 24:1–16

    Article  Google Scholar 

  99. Rolf A, Rixe J, Kim WK et al (2014) Right ventricular adaptation to pulmonary pressure load in patients with chronic thromboembolic pulmonary Hypertension before and after successful pulmonary endarterectomy–a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:96

    Article  PubMed  PubMed Central  Google Scholar 

  100. Addetia K, Bhave NM, Tabit CE et al (2014) Sample size and cost analysis for pulmonary arterial Hypertension drug trials using various imaging modalities to assess right ventricular size and function end points. Circ Cardiovasc Imaging 7:115–124

    Article  PubMed  Google Scholar 

  101. Vanderpool RR, Pinsky MR, Naeije R et al (2015) RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary Hypertension. Heart 101:37–43

    Article  PubMed  Google Scholar 

  102. Tello K, Dalmer A, Axmann J et al (2019) Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Hear Fail 12:e005512

    Article  Google Scholar 

  103. Galiè N, Humbert M, Vachiéry J-L et al (2015) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary Hypertension. Eur Heart J 37:67–119

    Article  PubMed  Google Scholar 

  104. Mahmud E, Madani MM, Kim NH et al (2018) Chronic thromboembolic pulmonary Hypertension: evolving therapeutic approaches for operable and inoperable Disease. J Am Coll Cardiol 71:2468–2486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.T.C, M.S., J.R.H, A.J.B, D.D.I., Y.A.Y, K.S., T.B., D.V. and S.P. all contributed to separate sections of the review text. M.T.C., M.S., and J.R.H. developed figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Michal Schäfer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cain, M.T., Schäfer, M., Park, S. et al. Characterization of pulmonary arterial stiffness using cardiac MRI. Int J Cardiovasc Imaging 40, 425–439 (2024). https://doi.org/10.1007/s10554-023-02989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02989-6

Navigation