Skip to main content

Advertisement

Log in

Predicting adverse cardiac events in sarcoidosis: deep learning from automated characterization of regional myocardial remodeling

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Recognizing early cardiac sarcoidosis (CS) imaging phenotypes can help identify opportunities for effective treatment before irreversible myocardial pathology occurs. We aimed to characterize regional CS myocardial remodeling features correlating with future adverse cardiac events by coupling automated image processing and data analysis on cardiac magnetic resonance (CMR) imaging datasets. A deep convolutional neural network (DCNN) was used to process a CMR database of a 10-year cohort of 117 consecutive biopsy-proven sarcoidosis patients. The maximum relevance − minimum redundancy method was used to select the best subset of all the features—24 (from manual processing) and 232 (from automated processing) left ventricular (LV) structural/functional features. Three machine learning (ML) algorithms, logistic regression (LogR), support vector machine (SVM) and multi-layer neural networks (MLP), were used to build classifiers to categorize endpoints. Over a median follow-up of 41.8 (inter-quartile range 20.4–60.5) months, 35 sarcoidosis patients experienced a total of 43 cardiac events. After manual processing, LV ejection fraction (LVEF), late gadolinium enhancement, abnormal segmental wall motion, LV mass (LVM), LVMI index (LVMI), septal wall thickness, lateral wall thickness, relative wall thickness, and wall thickness of 9 (out of 17) individual LV segments were significantly different between patients with and without endpoints. After automated processing, LVEF, end-diastolic volume, end-systolic volume, LV mass and wall thickness of 92 (out of 216) individual LV segments were significantly different between patients with and without endpoints. To achieve the best predictive performance, ML algorithms selected lateral wall thickness, abnormal segmental wall motion, septal wall thickness, and increased wall thickness of 3 individual segments after manual image processing, and selected end-diastolic volume and 7 individual segments after automated image processing. LogR, SVM and MLP based on automated image processing consistently showed better predictive accuracies than those based on manual image processing. Automated image processing with a DCNN improves data resolution and regional CS myocardial remodeling pattern recognition, suggesting that a framework coupling automated image processing with data analysis can help clinical risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iannuzzi MC, Rybicki BA, Teirstein AS (2007) Sarcoidosis. N Eng J Med 357:2153–2165. https://doi.org/10.1056/NEJMra071714

    Article  CAS  Google Scholar 

  2. Hamzeh N, Steckman DA, Sauer WH, Judson MA (2015) Pathophysiology and clinical management of cardiac sarcoidosis. Nat Rev Cardiol 12:278–288. https://doi.org/10.1038/nrcardio.2015.22

    Article  PubMed  Google Scholar 

  3. Patel MR, Cawley PJ, Heitner JF et al (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120:1969–1977. https://doi.org/10.1161/circulationaha.109.851352

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kouranos V, Tzelepis GE, Rapti A et al (2017) Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc Imaging 10:1437–1447. https://doi.org/10.1016/j.jcmg.2016.11.019

    Article  PubMed  Google Scholar 

  5. de Roos A, van den Berg-Huysmans A, Schoones JW (2017) Prognostic value of CMR-verified myocardial scarring in cardiac sarcoidosis: what to learn from a systematic review and meta-analysis? JACC Cardiovasc Imaging 10:421–423. https://doi.org/10.1016/j.jcmg.2016.07.018

    Article  PubMed  Google Scholar 

  6. Coleman GC, Shaw PW, Balfour PC Jr et al (2017) Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging 10:411–420. https://doi.org/10.1016/j.jcmg.2016.05.009

    Article  PubMed  Google Scholar 

  7. Youssef G, Beanlands RS, Birnie DH, Nery PB (2011) Cardiac sarcoidosis: applications of imaging in diagnosis and directing treatment. Heart 97:2078–2087. https://doi.org/10.1136/hrt.2011.226076

    Article  PubMed  Google Scholar 

  8. Smedema JP, Snoep G, van Kroonenburgh MP et al (2005) Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 45:1683–1690. https://doi.org/10.1016/j.jacc.2005.01.047

    Article  PubMed  Google Scholar 

  9. Nagai T, Kohsaka S, Okuda S, Anzai T, Asano K, Fukuda K (2014) Incidence and prognostic significance of myocardial late gadolinium enhancement in patients with sarcoidosis without cardiac manifestation. Chest 146:1064–1072. https://doi.org/10.1378/chest.14-0139

    Article  PubMed  Google Scholar 

  10. Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E (2017) T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 285:63–72. https://doi.org/10.1148/radiol.2017162732

    Article  PubMed  Google Scholar 

  11. Jeudy J, Burke AP, White CS, Kramer GB, Frazier AA (2015) Cardiac sarcoidosis: the challenge of radiologic-pathologic correlation—erratum. Radiographics 35:1316. https://doi.org/10.1148/rg.2015154010

    Article  PubMed  Google Scholar 

  12. Ise T, Hasegawa T, Morita Y et al (2014) Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart 100:1165–1172. https://doi.org/10.1136/heartjnl-2013-305187

    Article  CAS  PubMed  Google Scholar 

  13. Nadel J, Lancefield T, Voskoboinik A, Taylor AJ (2015) Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovas Imaging 16:634–641. https://doi.org/10.1093/ehjci/jeu294

    Article  Google Scholar 

  14. Chan K (2020) Extending the role of cardiac magnetic resonance in sarcoidosis risk stratification: editorial for “regional myocardial remodeling characteristics correlates with cardiac events in sarcoidosis.” J Magn Reson Imaging 52:510–511. https://doi.org/10.1002/jCMR.27096

    Article  PubMed  Google Scholar 

  15. Roberts WC, Becker TM, Hall SA (2018) Usefulness of total 12-lead QRS voltage as a clue to diagnosis of patients with cardiac sarcoidosis severe enough to warrant orthotopic heart transplant. JAMA Cardiol 3:64–68. https://doi.org/10.1001/jamacardio.2017.4172

    Article  PubMed  Google Scholar 

  16. Roberts WC, Chung MS, Ko JM, Capehart JE, Hall SA (2014) Morphologic features of cardiac sarcoidosis in native hearts of patients having cardiac transplantation. Am J Cardiol 113:706–712. https://doi.org/10.1016/j.amjcard.2013.11.015

    Article  PubMed  Google Scholar 

  17. Roberts WC, McAllister HA Jr, Ferrans VJ (1977) Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med 63:86–108. https://doi.org/10.1016/0002-343(77)90121-8

    Article  CAS  PubMed  Google Scholar 

  18. Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H (1999) Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am heart J 138(2 Pt 1):299–302. https://doi.org/10.1016/s0002-8703(99)70115-8

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Ahmed J, Feiglin D (2017) A 54-year-old man with new-onset ventricular fibrillation. Heart 103:1922–1924. https://doi.org/10.1136/heartjnl-2017-312052

    Article  PubMed  Google Scholar 

  20. Lu C, Chen J, Suksaranjit P et al (2020) Regional myocardial remodeling characteristics correlates with cardiac events in sarcoidosis. J Magn Reson Imaging 52:499–509. https://doi.org/10.1002/jCMR.27057

    Article  PubMed  Google Scholar 

  21. Chen J, Lei J, Scalzetti E et al (2018) Myocardial contractile patterns predict future cardiac events in sarcoidosis. Int J Cardiovasc Imaging 34:251–262. https://doi.org/10.1007/s10554-017-1233-9

    Article  CAS  PubMed  Google Scholar 

  22. Pozo E, Kanwar A, Deochand R et al (2014) Cardiac magnetic resonance evaluation of left ventricular remodelling distribution in cardiac amyloidosis. Heart 100:1688–1695. https://doi.org/10.1136/heartjnl-2014-305710

    Article  PubMed  Google Scholar 

  23. Florian A, Masci PG, De Buck S et al (2012) Geometric assessment of asymmetric septal hypertrophic cardiomyopathy by CMR. JACC Cardiovasc imaging 5:702–711. https://doi.org/10.1016/j.jcmg.2012.03.011

    Article  PubMed  Google Scholar 

  24. Kawaji K, Codella NC, Prince MR et al (2009) Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction. Circ Cardiovasc Imaging 2:476–484. https://doi.org/10.1161/circimaging.109.879304

    Article  PubMed  Google Scholar 

  25. Diller GP, Orwat S, Vahle J et al (2020) Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart 106:1007–1014. https://doi.org/10.1136/heartjnl-2019-315962

    Article  CAS  PubMed  Google Scholar 

  26. Bello GA, Dawes TJW, Duan J et al (2019) Deep learning cardiac motion analysis for human survival prediction. Nat Mach Intell 1:95–104. https://doi.org/10.1038/s42256-019-0019-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bai W, Sinclair M, Tarroni G et al (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20:65. https://doi.org/10.1186/s12968-018-0471-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Captur G, Radenkovic D, Li C et al (2017) Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. J Magn Reson Imaging 46:1082–1088. https://doi.org/10.1002/jCMR.25644

    Article  PubMed  Google Scholar 

  29. Lei J, Wang YG, Bhatta L et al (2019) Ventricular geometry-regularized QRSd predicts cardiac resynchronization therapy response: machine learning from crosstalk between electrocardiography and echocardiography. Int J Cardiovasc Imaging 35:1221–1229. https://doi.org/10.1007/s10554-019-01545-5

    Article  PubMed  Google Scholar 

  30. Biton Y, Goldenberg I, Kutyifa V et al (2016) Relative wall thickness and the risk for ventricular tachyarrhythmias in patients with left ventricular dysfunction. J Am Coll Cardiol 67:303–312. https://doi.org/10.1016/j.jacc.2015.10.076

    Article  PubMed  Google Scholar 

  31. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Sckikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  32. Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform 18:9. https://doi.org/10.1186/s12859-016-1423-9

    Article  Google Scholar 

  33. Singh D, Sisodia DS, Singh P (2020) Multi-objective evolutionary approach for the performance improvement of learners using ensembling feature selection and discretization technique on medical data. Cur Med Imaging 16:355–370. https://doi.org/10.2174/1573405614666180903114534

    Article  Google Scholar 

  34. Sabovčik F, Cauwenberghs N, Kouznetsov D et al (2020) Applying machine learning to detect early stages of cardiac remodelling and dysfunction. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa135

    Article  Google Scholar 

  35. Goldstein BA, Navar AM, Carter RE (2017) Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges. Eur Heart J 38:1805–1814. https://doi.org/10.1093/eurheartj/ehw302

    Article  PubMed  Google Scholar 

  36. Shah RV, Yeri AS, Murthy VL et al (2017) Association of multiorgan computed tomographic phenomap with adverse cardiovascular health outcomes: the framingham heart study. JAMA Cardiol 2:1236–1246. https://doi.org/10.1001/jamacardio.2017.3145

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71:2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521

    Article  PubMed  Google Scholar 

  38. Beam AL, Kohane IS (2018) Big data and machine learning in health care. JAMA 319:1317–1318. https://doi.org/10.1001/jama.2017.18391

    Article  PubMed  Google Scholar 

  39. Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Eng J Med 375:1216–1219. https://doi.org/10.1056/NEJMp1606181

    Article  Google Scholar 

  40. Paetsch I, Jahnke C, Ferrari VA et al (2006) Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. Eur Heart J 27:1459–1464. https://doi.org/10.1093/eurheartj/ehi883

    Article  PubMed  Google Scholar 

  41. Al’Aref SJ, Anchouche K, Singh G et al (2019) Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 40:1975–1986. https://doi.org/10.1093/eurheartj/ehy404

    Article  CAS  PubMed  Google Scholar 

  42. Leiner T, Rueckert D, Suinesiaputra A et al (2019) Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson 21:61. https://doi.org/10.1186/s12968-019-0575-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Singh A, Voss WB, Lentz RW, Thomas JD, Akhter N (2019) The diagnostic and prognostic value of echocardiographic strain. JAMA Cardiol 4:580–588. https://doi.org/10.1001/jamacardio.2019.1152

    Article  PubMed  Google Scholar 

  44. Velangi PS, Chen KA, Kazmirczak F et al (2020) Right ventricular abnormalities on cardiovascular magnetic resonance imaging in patients with sarcoidosis. JACC Cardiovasc Imaging 13:1395–1405. https://doi.org/10.1016/j.jcmg.2019.12.011

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, Y.G., Zaman, F. et al. Predicting adverse cardiac events in sarcoidosis: deep learning from automated characterization of regional myocardial remodeling. Int J Cardiovasc Imaging 38, 1825–1836 (2022). https://doi.org/10.1007/s10554-022-02564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02564-5

Keywords

Navigation