Skip to main content

Advertisement

Log in

Usefulness of skeletal muscle area detected by computed tomography to predict mortality in patients undergoing transcatheter aortic valve replacement: a meta-analysis study

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Measures of sarcopenia, such as low muscle mass measured from the readily available preoperative computed tomography (CT) images, have been recently suggested as a predictor of outcomes in patients undergoing transcatheter aortic valve replacement (TAVR). However, results of these studies are variable and, therefore, we performed a systematic review of current literature to evaluate sarcopenia as a predictor of outcome post TAVR. The search was carried out in electronic databases between 2008 and 2018. We identified studies that reported CT-derived skeletal muscle area (SMA) and survival outcomes post TAVR. Studies were evaluated for the incidence of early (≤ 30 days) and late all-cause mortality (> 30 days) post TAVR. Eight studies with 1881 patients were included (mean age of 81.8 years ± 12, 55.9% men). Mean body mass index was (28.2 kg/m2 ± 1.1), mean Society of Thoracic Surgeons risk score (7.0 ± 0.6), and mean albumin level was (3.8 g/dL ± 0.1). Higher SMA was associated with lower long-term mortality [odds ratio (OR) 0.49, 95% confidence interval (CI) 0.28–0.83, p = 0.049], compared with low SMA. Also, higher SMA was associated with lower early mortality but was not statistically significant (OR 0.72; 95% CI 0.44–1.18; p = 0.285). CT-derived SMA provides value in predicting post-TAVR long-term outcomes for patients undergoing TAVR. This is a simple risk assessment tool that may help in making treatment decisions and help identifying and targeting high-risk patients with interventions to improve muscle mass prior to and following the procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Piazza N, Wenaweser P, van Gameren M, Pilgrim T, Tzikas A, Otten A, Nuis R, Onuma Y, Cheng JM, Kappetein AP, Boersma E, Juni P, de Jaegere P, Windecker S, Serruys PW (2010) Relationship between the logistic EuroSCORE and the society of thoracic surgeons predicted risk of mortality score in patients implanted with the CoreValve ReValving system–a Bern-Rotterdam study. Am Heart J 159(2):323–329. https://doi.org/10.1016/j.ahj.2009.11.026

    Article  PubMed  Google Scholar 

  2. Afilalo J, Lauck S, Kim DH, Lefevre T, Piazza N, Lachapelle K, Martucci G, Lamy A, Labinaz M, Peterson MD, Arora RC, Noiseux N, Rassi A, Palacios IF, Genereux P, Lindman BR, Asgar AW, Kim CA, Trnkus A, Morais JA, Langlois Y, Rudski LG, Morin JF, Popma JJ, Webb JG, Perrault LP (2017) Frailty in older adults undergoing aortic valve replacement: the FRAILTY-AVR study. J Am Coll Cardiol 70(6):689–700. https://doi.org/10.1016/j.jacc.2017.06.024

    Article  Google Scholar 

  3. Schoenenberger AW, Moser A, Bertschi D, Wenaweser P, Windecker S, Carrel T, Stuck AE, Stortecky S (2018) Improvement of risk prediction after transcatheter aortic valve replacement by combining frailty with conventional risk scores. JACC: Cardiovasc Interv 11(4):395–403. https://doi.org/10.1016/j.jcin.2017.11.012

    Article  Google Scholar 

  4. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763

    Article  CAS  PubMed  Google Scholar 

  5. Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E (2014) Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci 6:192. https://doi.org/10.3389/fnagi.2014.00192

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH (2012) Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw 49(5):1–15

    Article  Google Scholar 

  7. Wells GSB, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2014) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  8. Garg L, Agrawal S, Pew T, Hanzel GS, Abbas AE, Gallagher MJ, Shannon FL, Hanson ID (2017) Psoas muscle area as a predictor of outcomes in transcatheter aortic valve implantation. Am J Cardiol 119(3):457–460. https://doi.org/10.1016/j.amjcard.2016.10.019

    Article  PubMed  Google Scholar 

  9. Garg L, Pow T, Gallagher M, Abbas A, Hanzel G, Safian R, Shannon F, Agrawal S, Hanson I (2016) Iliopsoas area as an objective frailty assessment tool for TAVR. J Am Coll Cardiol 67 (13 Suppl):246. https://doi.org/10.1016/s0735-1097(16)30247-9

    Article  Google Scholar 

  10. Mok M, Allende R, Leipsic J, Altisent OA, Del Trigo M, Campelo-Parada F, DeLarochelliere R, Dumont E, Doyle D, Cote M, Freeman M, Webb J, Rodes-Cabau J (2016) Prognostic value of fat mass and skeletal muscle mass determined by computed tomography in patients who underwent transcatheter aortic valve implantation. Am J Cardiol 117(5):828–833. https://doi.org/10.1016/j.amjcard.2015.12.015

    Article  PubMed  Google Scholar 

  11. Paknikar R, Friedman J, Cron D, Deeb GM, Chetcuti S, Grossman PM, Wang S, Englesbe M, Patel HJ (2016) Psoas muscle size as a frailty measure for open and transcatheter aortic valve replacement. J Thoracic Cardiovasc Surg 151(3):745–751. https://doi.org/10.1016/j.jtcvs.2015.11.022

    Article  Google Scholar 

  12. Saji M, Lim DS, Ragosta M, LaPar DJ, Downs E, Ghanta RK, Kern JA, Dent JM, Ailawadi G (2016) Usefulness of psoas muscle area to predict mortality in patients undergoing transcatheter aortic valve replacement. Am J Cardiol 118(2):251–257. https://doi.org/10.1016/j.amjcard.2016.04.043

    Article  PubMed  Google Scholar 

  13. Mamane S, Mullie L, Ades M, Trnkus A, Webb J, Piazza N, Perrault L, Noiseux N, Lauck S, Arora R (2017) Incremental prognostic value of sarcopenia in older adults undergoing transcatheter aortic valve replacement: the FRAILTY-AVR study. Circulation 136:A20791–A20791.

    Google Scholar 

  14. Lindman B, Sheehy J, Chung M, Perry A, Quader N, Zajarias A, Vatterott A, Lawler C, Melby S, Lasala J (2016) Sarcopenia is associated with increased mortality and worse quality of life after transcatheter aortic valve replacement. Eur Heart J 37:352–353

    Google Scholar 

  15. Nemec U, Heidinger B, Sokas C, Chu L, Eisenberg RL (2017) Diagnosing sarcopenia on thoracic computed tomography: quantitative assessment of skeletal muscle mass in patients undergoing transcatheter aortic valve replacement. Acad Radiol 24(9):1154–1161. https://doi.org/10.1016/j.acra.2017.02.008

    Article  PubMed  Google Scholar 

  16. Talbot-Hamon C, Afilalo J (2017) Transcatheter aortic valve replacement in the care of older persons with aortic stenosis. J Am Geriatr Soc 65(4):693–698. https://doi.org/10.1111/jgs.14776

    Article  PubMed  Google Scholar 

  17. Puri R, Iung B, Cohen DJ, Rodes-Cabau J (2016) TAVI or No TAVI: identifying patients unlikely to benefit from transcatheter aortic valve implantation. Eur Heart J 37(28):2217–2225. https://doi.org/10.1093/eurheartj/ehv756

    Article  PubMed  Google Scholar 

  18. Bogdan A, Barbash IM, Segev A, Fefer P, Bogdan SN, Asher E, Fink N, Hamdan A, Spiegelstein D, Raanani E, Guetta V (2016) Albumin correlates with all-cause mortality in elderly patients undergoing transcatheter aortic valve implantation. EuroIntervention 12(8):e1057-e1064. https://doi.org/10.4244/eijy15m10_09

    Article  PubMed  Google Scholar 

  19. Koifman E, Magalhaes MA, Ben-Dor I, Kiramijyan S, Escarcega RO, Fang C, Torguson R, Okubagzi P, Negi SI, Baker NC, Minha S, Corso PJ, Shults C, Satler LF, Pichard AD, Waksman R (2015) Impact of pre-procedural serum albumin levels on outcome of patients undergoing transcatheter aortic valve replacement. Am J Cardiol 115(9):1260–1264. https://doi.org/10.1016/j.amjcard.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  20. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. https://doi.org/10.1056/nejm199902113400607

    Article  CAS  PubMed  Google Scholar 

  21. Rothschild MA, Oratz M, Schreiber SS (1988) Serum albumin. Hepatology 8(2):385–401. https://doi.org/10.1002/hep.1840080234 doi

    Article  CAS  PubMed  Google Scholar 

  22. Mijnarends DM, Meijers JM, Halfens RJ, ter Borg S, Luiking YC, Verlaan S, Schoberer D, Cruz Jentoft AJ, van Loon LJ, Schols JM (2013) Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc 14(3):170–178. https://doi.org/10.1016/j.jamda.2012.10.009

    Article  PubMed  Google Scholar 

  23. Bleakley C, Monaghan MJ (2018) The pivotal role of imaging in TAVR procedures. Curr Cardiol Rep 20(2):9. https://doi.org/10.1007/s11886-018-0949-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu W-L, Omid-Fard N, Arepalli C, Shao M, Hart SL, Weir McCall J, Rosenblatt SR, Blanke P, Leipsic J (2018) Role of computed tomography in pre-procedural planning of transcatheter mitral valve replacement. Struct Heart 2(1):23–29. https://doi.org/10.1080/24748706.2017.1407503

    Article  Google Scholar 

  25. Kirk PS, Friedman JF, Cron DC, Terjimanian MN, Wang SC, Campbell DA, Englesbe MJ, Werner NL (2015) One-year postoperative resource utilization in sarcopenic patients. J Surg Res 199(1):51–55. https://doi.org/10.1016/j.jss.2015.04.074

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cesari M, Leeuwenburgh C, Lauretani F, Onder G, Bandinelli S, Maraldi C, Guralnik JM, Pahor M, Ferrucci L (2006) Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am J Clin Nutr 83(5):1142–1148. https://doi.org/10.1093/ajcn/83.5.1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolfe RR (2002) Regulation of muscle protein by amino acids. J Nutr 132(10):3219S–3224S. https://doi.org/10.1093/jn/131.10.3219S

    Article  CAS  PubMed  Google Scholar 

  28. Ferrucci L, Maggio M, Ceda GP, Beghi C, Valenti G, De Cicco G (2006) Acute postoperative frailty. J Am Coll Surg 203(1):134–135. https://doi.org/10.1016/j.jamcollsurg.2006.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, Chen L-K, Fielding RA, Martin FC, Michel J-P, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759. https://doi.org/10.1093/ageing/afu115

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bibas L, Levi M, Bendayan M, Mullie L, Forman DE, Afilalo J (2014) Therapeutic interventions for frail elderly patients: part I. Published randomized trials. Prog Cardiovasc Dis 57(2):134–143. https://doi.org/10.1016/j.pcad.2014.07.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Fred King, MSLS (the medical librarian at MedStar Washington Hospital Center) for his great help in the literature search.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector M. Garcia-Garcia.

Ethics declarations

Conflict of interest

Ron Waksman: Advisory Board: Abbott Vascular, Amgen, Boston Scientific, Cardioset, Cardiovascular Systems Inc., Medtronic, Philips Volcano, Pi-Cardia Ltd.; Consultant: Abbott Vascular, Amgen, Biosensors, Biotronik, Boston Scientific, Cardioset, Cardiovascular Systems Inc., Medtronic, Philips Volcano, Pi-Cardia Ltd.; Grant Support: Abbott Vascular, AstraZeneca, Biosensors, Biotronik, Boston Scientific, Chiesi; Speakers Bureau: AstraZeneca, Chiesi; Investor: MedAlliance. All other authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 857 KB)

Supplementary material 2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soud, M., Alahdab, F., Ho, G. et al. Usefulness of skeletal muscle area detected by computed tomography to predict mortality in patients undergoing transcatheter aortic valve replacement: a meta-analysis study. Int J Cardiovasc Imaging 35, 1141–1147 (2019). https://doi.org/10.1007/s10554-019-01582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01582-0

Keywords

Navigation